
Phing 2 − User Guide
Andreas Aderhold, Alex Black, Manuel Holtgrewe, Hans Lellelid

Table of Contents
About this book...1

Authors...1
CVS..1
Copyright...1
License...1

Introduction...2
What Phing Is...2
Phing & Binarycloud: History...2
How Phing Works..3
Cool, so how can I help?..3

Setting−Up Phing..4
System Requirements..4

Operating Systems...4
Software Dependencies...4

Obtaining Phing...4
Distribution Files...4
Getting A Development Copy From CVS..5

PEAR Install..6
Non−PEAR Install...6

Unix...6
Windows..7
Advanced...7

Calling Phing...7
Command Line..7

Getting Started..8
XML And Phing..8
Writing A Simple Buildfile..8

Project Element...9
Target Element..9
Task Elements...10
Property Element...10

More Complex Buildfile..11

Project Components..13
Projects...13
Project Components in General...13
Targets..13
Tasks..14
Types..15

Basics...15
Referencing Types...15

i

Table of Contents
Project Components

Basic Types..16
FileSet..16
FileList...16

Extending Phing..19
Extension Possibilities...19

Tasks..19
Types...19
Mappers...19

Source Layout..19
Files And Directories...20
File Naming Conventions..20
Coding Standards..21

System Initialization..21
Wrapper Scripts...21
The Main Application (phing.php)..22
The Phing Class...22

System Services...22
The Exception system...22

Build Lifecycle...22
How Phing Parses Buildfiles...22

Writing Tasks...23
Creating A Task...23
Using the Task...24
Source Discussion...24
Task Structure..25
Package Imports..25
Class Declaration...25
Class Properties...25
The Constructor...26
Setter Methods...26
Creator Methods..26
init() Method..26
main() Method...26
Arbitrary Methods...27
Summary...27

Writing Types..27
Creating a DataType..27
Using the DataType...30
Source Discussion...30

Writing Mappers..31
Creating a Mapper...31
Using the Mapper..32

ii

Table of Contents
Appendix A: Fact Sheet..33

Built−In Properties...33
Command Line Arguments..33
Distribution File Layout...34
Program Exit Codes...34
The LGPL License...35

Appendix B: Core Tasks..44
AdhocTaskdefTask..44

Parameters...44
AdhocTypedefTask..44

Parameters...45
AppendTask...45

Parameters...45
Supported Nested Tags..46

AvailableTask..46
Parameters...46

CallTargetTask...46
Example...46
Parameters...47

CopyTask...47
Example...47
Attributes...47
Supported Nested Tags..48

 DeleteTask..48
Example...48
Attributes...48
Supported Nested Tags..49

EchoTask..49
Example...49
Attributes...49

ExecTask..49
Example...49
Attributes...49

ForeachTask...50
Example...50
Attributes...50

InputTask...50
Example...50
Attributes...50

MkdirTask..51
Example...51
Attributes...51

MoveTask..51

iii

Table of Contents
Appendix B: Core Tasks

Example...51
Attributes and Nested Elements..51

PhingTask..52
Example...52
Attributes...52
Supported Nested Tags..52
Base directory of the new project..52

PearPackageTask...53
Example...53
Attributes...53
Supported Nested Tags..53

PhpEvalTask..54
Examples...54
Attributes...54
Supported Nested Tags..54

PropertyTask..54
Example...54
Attributes...54

ReflexiveTask..55
Example...55
Attributes...55
Supported Nested Tags:...55

ResolvePathTask..55
Example...55
Attributes...56

TarTask..56
Example...56
Attributes...56
Supported Nested Tags..56

TaskdefTask...56
Example...56
Attributes...57
Supported Nested Tags..57

TouchTask..57
Example...57
Attributes...57

TypedefTask..57
Example...57
Attributes...58
Supported Nested Tags..58

UpToDateTask...58
Supported Nested Tags..58

XsltTask...59

iv

Table of Contents
Appendix B: Core Tasks

Example...59
Attributes...59
Suppported Nested Elements...59

Appendix C: Core Types..60
FileList...60

Usage Examples..60
Attributes...60

FileSet..60
Examples...60
Usage Example..61
Attributes...61

Path / Classpath..61
Nested Tags...61

Core Filters..62
PhingFilterReader..62

Attributes...62
Nested Tags...63
Advanced...63

ExpandProperties...63
HeadFilter..63

Attributes...63
Line Contains...64

Nested Tags...64
LineContainsRegexp..64

Nested Tags...64
PrefixLines...64

Attributes...64
ReplaceTokens...65

Attributes...65
Nested Tags...65

ReplaceRegexp..65
Nested Tags...65

StripLineBreaks...66
StripLineComments...66

Nested Tags...66
StripPhpComments..66
TabToSpaces..66

Attributes...66
TailFilter..67

Attributes...67
XsltFilter..67

Attributes...67

v

Table of Contents
Appendix C: Core Types

Nested Tags...67
Core Mappers...67

Attributes...68
FlattenMapper..68

Examples...68
GlobMapper...68

Examples...69
IdentityMapper...69
MergeMapper...69

Examples...69
RegexpMapper...69

Examples...69

Appendix D: Project Components...71
Phing Projects..71

Example...71
Attributes...71

Targets..71
Example...71
Attributes...72

Appendix E: File Formats..73
Build File Format...73
Property File Format..73

Bibliography..75
International Standards..75
Licenses..75
Open Source Projects...75
Manuals..76
Other Resources...77

vi

About this book

Authors

Andreas Aderhold, andi@binarycloud.com•
Alex Black, enigma@turingstudio.com•
Manuel Holtgrewe, grin@gmx.net•
Hans Lellelid, hans@xmpl.org•

Because Phing is based on Ant, parts of this manual are also adapted from the Ant manual (see [ant]).

CVS

$Id: AboutThisBook.html,v 1.3 2003/10/20 18:15:25 hlellelid Exp $

$Revision: 1.3 $

Copyright

Copyright 2003, turing and others.

License

See the GNU FDL ([gnu−fdl], which is included in this book.

Copyright (c) 2002, turing
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
A copy of the license is included in the section entitled "License".

1 01/29/2004 10:28:43 AM

Introduction

What Phing Is

Phing is a project build system based on Apache ant [ant]. You can do anything with Phing that you could do
with a traditional build system like Gnu make [gnumake], and Phing's use of simple XML build files and
extensible PHP "task" classes make it an easy−to−use and highly flexible build framework.

Because Phing is based on Ant, parts of this manual are also adapted from the ant manual (see [ant]). We are
extremely grateful to the folks in the Ant project for creating (and continuing to create) such an inspiring build
system model, and for the open−source licensing that makes it possible for us to learn from each other and
build increasingly better tools.

Phing & Binarycloud: History

Phing was originally a subproject of Binarycloud. Binarycloud is a highly engineered application framework,
designed for use in enterprise environments. Binarycloud uses XML extensively for storing metadata about a
project (configuration, nodes, widgets, site structure, etc.). Because Binarycloud is built for PHP, performing
extensive XML processing and transformations on each page request is an unrealistic proposition. Phing is
used to "compile" the XML metadata into PHP arrays that can be processed without overhead by PHP scripts.

Of course, XML "compilation" is only one of many ways that Binarycloud uses the Phing build system. The
Phing build system makes it possible for you to:

Build multi language pages from one source tree (see binarycloud documentation and [below in this
document]),

•

Centralize metadata (e.g. your data model) in one XML file and generate several files from that XML
with different XSLT.

•

It the beginning, Binarycloud used the GNU make system; however, this approach had some drawbacks: The
"space−before−tab"−problem in makefiles, the fact that it is only natively available for Unix systems etc. So,
the need for a better build system arose. Apache Ant was a logical choice −− do to its use of XML build files
and modular design. The problem was that Ant is written in Java, so you need to install a JVM on your
computer to use it. Besides the need for yet another interpreter (i.e. besides PHP), there was also
legal/ideological conflict in requiring a commercial JVM (there were problems with Ant on JVMs other than
Sun's) for an LGPL'd Binarycloud.

So, the development of Phing began. Phing is a build system written in PHP and uses the ideas of Ant. The
first release was designed & developed simultaneously, and thus not very sophisticated. This original system
was quickly pushed to its limits and the need for a better Phing became a priority. Andreas Anderhold, who
was responsible for Phing/r1, designed and wrote much of the Phing/r2 that followed. Phing/r2 became the
Phing−1.0 that exists today for PHP4.

The current development of Phing is focused on Phing 2, which has involved a number of bugfixes,
functionality enhancements, and most significantly a conversion of the codebase to use new PHP5 features

2 01/29/2004 10:28:43 AM

such as abstract classes, interfaces, and try/catch/throw exception handling.

How Phing Works

Phing uses XML buildfiles that contain a description of the things to do. The buildfile is structured into targets
that contain the actual commands to perform (e.g. commands to copy a file, delete a directory, perform a DB
query, etc.). So, to use Phing, you would first write your buildfile and then you would run phing, specifying
the target in your buildfile that you want to execute.

% phing −f mybuildfile.xml mytarget

By default Phing will look for a buildfile named build.xml (so you don't have to specify the buildfile name
unless it is not build.xml) and if no target is specified Phing will try to execute the default target, as specified
in the <project> tag.

Cool, so how can I help?

Phing is under active development and there are many things to be done. To get involved, you can start by
doing the following:

Read this manual to understand Phing ;−)•
Go to http://phing.tigris.org and subscribe to the "dev" mailing list•

3 01/29/2004 10:28:43 AM

Setting−Up Phing
The goal of this chapter is to help you obtain and correctly setup and execute Phing on your operating system.
Once you setup Phing properly you shouldn't need to revisit this chapter, unless you're re−installing or
moving your installation to another platform.

System Requirements

To use Phing you must have installed PHP version 5.0.0b1 or above compiled −−with−libxml2, as well as
−−with−xsl if you want to make use of advanced functionality. At the time of writing PHP5.0.0b2−dev is
currently unable to run Phing due to segmentation faults arising somewhere in the XML parsing of the build
file.

For more information on PHP and the required modules see the PHP [php] website. For a brief list of software
dependencies see below.

Operating Systems

Designed for portability from the get go, Phing runs on all platforms that run PHP. However some advanced
funcionality may not work properly or is simply ignored on some platforms (i.e. chmod on the Windows
platform).

To get the most out of Phing, a Unix style platform is recommended. Namely: Linux, FreeBSD, OpenBSD,
etc.

Software Dependencies

For a detailed list of required sofware and libraries, refer to the following table of Software dependencies

Software Dependencies

Software Required for Source

PHP 5.0.0b2Execution http://www.php.net

Obtaining Phing

Phing is free software distributed under the terms of the LGPL.

Distribution Files

There are several ways to get a Phing distribution package. If you do not want to participate in developing
Phing itself it is recommended that you get the latest snapshot or stable packaged distribution. If you are
interested in helping with Phing development, get a CVS revision of the files, as described below.

4 01/29/2004 10:28:43 AM

http://www.php.net

The easiest way to obtain the distribution package is to visit the Phing website [phing] and download the
current distribution package in the format you desire.

As of version 2.0.0b1, you have the option of downloading a PEAR−installable package or the full phing
distribution. If you wish to modify phing we suggestion downloading the full version so that you can (e.g.)
create your own PEAR package. If you simply wish to use Phing for your own project or need it to build
another package, download & install the PEAR package.

Getting A Development Copy From CVS

You are encouraged to contibute to the development of Phing. If you want to participate in Phing development
or if you are simply intereseted in the latest features and development, obtain a CVS copy as described in the
following paragraphs.

The CVS revisions of Phing are not bullet−proof and may fail to execute properly on your machine. Only
obtain the CVS versions if you are absolutely aware of limitations and constraints of such an action.
Additionally you should sign up to the development mailinglist to report and notice errors and
incompatibilities.

We assume that you are running a Unix style operating system. So we expect the CVS software is installed ant
the cvs executable is in your system's search path.. However, the steps for a Windows based system are very
similar. There is plenty additional resources available on how to use CVS [cvs−howto] and on CVS
speciaities on the Tigris project management platfrom [cvs−tigris].

The frist thing you have to do is log onto the CVS server. Therefore type the following line at your command
promt:

 cvs −d :pserver:guest@cvs.tigris.org:/cvs login

If you signed−up as developer at the Tigris website, login with your own password, the same as the one you
use to access the site. Or use the password "guest" with username "guest".

If this is the only project you working on, you only need to set the cvsroot once. Thereafter when you log in to
this domain, the cvs repository for this project is assumed. If you are working multiple projects, however, you
must specify the cvsroot each time you log in to ensure that the cvs repository you are accessing is the right
one.

To check out the project source repository an individual module (if you don't need the entire repository), type:

cvs −d :pserver:guest@cvs.tigris.org:/cvs checkout phing

This command should result in a scrolling list of files being added to the local directory you specified on your
machine. Now you are ready to use your favourite file editor to work with individual files and make changes.

The top−level CVS module contains the Phing project website in addition to the phing application; the Phing
files, therefore, reside in the phing/ subdirectory:

5 01/29/2004 10:28:43 AM

./phing/phing

PEAR Install

The easiest way to install Phing is using the PEAR installer. Provided that the package you downloaded is a
the PEAR−ready package, you can install Phing simply from the command line (Unix or Windows):

$> pear install phing−2.0.0b1−pear.tar.gz

The pear installer will check any dependencies and place the phing script (phing or phing.bat) into your PHP
script directoy (i.e. where the "pear" script resides).

Non−PEAR Install

If you are not using the PEAR installer, you will need to setup your environment in order to run Phing. The
distribution of Phing consists of three directories: bin , docs and classes . Only the bin and classes directories
are required to run Phing. To install Phing, choose a directory and uncompress the distribution file in that
directory (you may already have done this in a prior step). This directory will be known as PHING_HOME .

On Windows 95 and Windows 98, the script used to launch Phing will have problems if PHING_HOME is
a long filepath. This is due to limitations in the OS's handling of the "for" batch−file statement. It is
recommended, therefore, that Phing be installed in a short path, such as C:\opt\phing.

Before you can run Phing there is some additional set up you will need to do perform:

Add the full path to the bin/ directory to your path.•
Set the PHING_HOME environment variable to the directory where you installed Phing. On some
operating systems the Phing wrapper scripts can guess PHING_HOME (Unix dialects and Windows
NT/2000). However, it is better to not rely on this behavior.

•

Set the PHP_COMMAND environment variable to where your Php binary is located (including the
binary i.e. PHP_COMMAND=/usr/bin/php).

•

Set the PHP_CLASSPATH environment variable (see the section below). This should be set at least
point to PHING_HOME/classes. Alternatively, you can also just add the phing/classes directory to
your PHP include_path ini setting.

•

Check your php.ini file to make sure that you have the following settings:
max_execution_time = 0 // unlimited execution time♦
memory_limit = 32M // you may need more memory depending on size of your build files♦

•

If you are using Phing in conjunction with another application, you may need to add additional paths to
PHP_CLASSPATH.

Unix

Assuming you are running a Unix dialect operating system with the bash bourne shell and Phing is installed
in /opt/phing . The following sets up the environment properly:

6 01/29/2004 10:28:43 AM

 export PHP_COMMAND=/usr/bin/php
 export PHING_HOME=/opt/phing
 export PHP_CLASSPATH=${PHING_HOME}/classes
 export PATH=${PATH}:${PHING_HOME}/bin

Windows

On the Windows platfrom, assuming Phing is installed in c:\opt\phing. The following sets up your
environment:

 set PHP_COMMAND=c:\opt\php\php.exe
 set PHING_HOME=c:\opt\phing
 set PHP_CLASSPATH=c:\opt\phing\classes
 set PATH=%PATH%;%PHING_HOME%\bin

Advanced

There are lots of variants that can be used to run/prepare Phing. You need at least the following:

If you want Phing to be able to use other packages / classes, you can either add them to the
PHP_CLASSPATH or to PHP's include_path.

•

Some Tasks in phing/tasks/ext may require 3rd party libraries to be installed. Generally, tools with
compatible license (and stable releases) are included in phing/lib so that outside dependencies can be
avoided. PEAR libs will not, however, be bundled with Phing since they are generally bundled with
PHP. If you are using a 3rd party task, see the Task documentation to be aware of any dependencies.

•

You are now ready to use the phing command at your command prompt, from everywhere in your directory
tree.

Calling Phing

Now you are prepared to execute Phing on the command line or via script files. The following section briefly
describe how to properly execute phing.

Command Line

Phing execution on the command line is simple. Just change to the directory where your buildfile resides and
type

$ phing [targetname]

at the command line (where [targetname] is the target you want to be executed). Optionally, you may specify
command line arguments as listed in Appendix A.

7 01/29/2004 10:28:43 AM

Getting Started
Phing buildfiles are written in XML, and so you will need to know at least some basic things about XML to
understand the following chapter. There is a lot of information available on the web:

The Standard Recommendation of XML by the w3c http://www.w3.org/TR/2000/REC−xml: very
technical but exhaustive.

•

XML In 10 Points http://www.w3.org/XML/1999/XML−in−10−points: Quick introduction into XML.•
A technical introduction to XML http://www.xml.com/pub/a/98/10/guide0.html: Interesting article by
the creator of DocBook.

•

XML And Phing

A valid Phing buildfile has the following basic structure:

The document prolog•
Exactly one root element called <project> .•
Several Phing type elements (i.e. <property> , <fileset> , <patternset> etc.)•
One or more <target> elements containing built−in or user defined Phing task elements (i.e.
<install> , <bcc> , etc).

•

Writing A Simple Buildfile

The Foobar project installs some PHP files from a source location to a target location, creates an archive of
this files and provides an optional clean−up of the build tree:

<?xml version="1.0"?>

<project name="FooBar" default="dist" basedir=".">

 <target name="prepare">
 <echo msg="Preparing build..." />
 <mkdir dir="./build" />
 </target>

 <target name="build" depends="prepare">
 <echo>Building...</echo>
 <copy file="./src/File.php" to="./build/File.php"/>
 <copy file="./src/File2.php" to="./build/File2.php"/>
 </target>

 <target name="dist" depends="build">
 <echo message="Creating archive..." />
 <tar outfile="furbee.tar.gz" basedir="./build"/>
 </target>

 <target name="clean">
 <echo msg="Cleaning up..."/>
 <delete file="./build"/>

8 01/29/2004 10:28:43 AM

http://www.w3.org/TR/2000/REC-xml
http://www.w3.org/XML/1999/XML-in-10-points
http://www.xml.com/pub/a/98/10/guide0.html

 </target>
</project>

Project Element

The first element after the document prolog is the root element named <project> on line 3. This element is a
container for all other elements and can/must have the following attributes:

<project> Attributes

Attribute Meaning Required

name The name of the project No

basedir The base directory of the project. If none is specified, the current directory is used.No

default
The default target that is to be executed if no target(s) are specified when calling this
build file.

Yes

descriptionThe description of the project. Yes

Target Element

A target can depend on other targets. You might have a target for installing the files in the build tree, for
example, and a target for creating a distributable tar.gz archive. You can only build a distributable when you
have installed the files first, so the distribute target depends on the install target. Phing resolves these
dependencies.

It should be noted, however, that Phing's depends attribute only specifies the order in which targets should be
executed − it does not affect whether the target that specifies the dependency(s) gets executed if the dependent
target(s) did not (need to) run.

Phing tries to execute the targets in the depends attribute in the order they appear (from left to right). Keep in
mind that it is possible that a target can get executed earlier when an earlier target depends on it, in this case
the dependant is only executed once:

 <target name="D" depends="C,B,A" />

Suppose we want to execute target D . From its depends attribute, you might think that first target C , then B
and then A is executed. Wrong! C depends on B , and B depends on A , so first A is executed, then B , then C ,
and finally D .

A target gets executed only once, even when more than one target depends on it (see the previous example).

The optional description attribute can be used to provide a one−line description of this target, which is printed
by the −projecthelp command−line option.

9 01/29/2004 10:28:43 AM

Target attributes

You can specify one or more of the following attributes within the target element.

<target> Attributes

Attribute Meaning Required

name The name of the target Yes

depends A comma−seperated list of targets this target depends on. No

if The name of the Property that hast to be set in order for this target to be executedNo

unless The name of the Property that must not be set in order for this target to be executed.

Task Elements

A task is a piece of PHP code that can be executed. This code implements a particular action to perform (i.e.
install a file). Therefore it must be defined in the buildfile so that it is actually invoked by Phing.

These references will be resolved before the task is executed.

Tasks have a common structure:

 <name attribute1="value1" attribute2="value2" ... />

where name is the name of the task, attributeN is the attribute name, and valueN is the value for this attribute.

There is a set of core tasks (see Appendix B) along with a number of optional tasks. It is also very easy to
write your own tasks (see Extending Phing).

Tasks can be assigned an id attribute:

 <taskname id="taskID" ... />

By doing this you can refer to specific tasks later on in the code of other tasks.

Property Element

Properties are essentially variables that can be used in the buildfile. These might be set in the buildfile by
calling the PropertyTask, or might be set outside Phing on the command line (properties set on the command
always line override the ones in the buildfile). A property has a name and a value only. Properties may be
used in the value of task attributes. This is done by placing the property name between " ${ " and " } " in the
attribute value. For example, if there is a BC_BUILD_DIR property with the value 'build', then this could be
used in an attribute like this: ${BC_BUILD_DIR}/en . This is resolved to build/en.

It should be noted that if you use a property that is not defined via the property task, the system environment
table is searched for this name. For example, if you would use the property ${BCHOME} and you did not

10 01/29/2004 10:28:43 AM

define this prior in the buildfile or at the command line, Phing uses the environment variable BCHOME if it
exists.

Built−in Properties

Phing provides access to system properties as if they had been defined using a <property> task. For example,
${os.name} expands to the name of the operating system. See Appendix A for a complete list

More Complex Buildfile

<?xml version="1.0" ?>

<project name="testsite" basedir="." default="main">

 <property environment="env"/>

 <property file="${env.BCHOME}/build.properties"/>

 <property name="package" value="${phing.project.name}" override="true" />
 <property name="builddir" value="${env.BCHOME}/build/testsite" override="true" />
 <property name="srcdir" value="${project.basedir}" override="true" />

 <!−− Fileset for all files −−>
 <fileset dir="." id="allfiles">
 <include name="**">
 </fileset>

 <!−− Main Target −−>
 <target name="main" description="main target">
 <copy todir="${builddir}">
 <fileset refid="allfiles" />
 </copy>
 </target>

 <!−− Rebuild −−>
 <target name="rebuild" description="rebuilds this package">
 <delete dir="${builddir}" />
 <phingcall target="main"/>
 </target>
</project>

This build file first defines some properties with the <property> task call to PropertyTask. Then, it defines a
fileset and two targets. Let us have a quick rundown of this build file.

The first five tags within the project tag define properties. They appear in the three ways this tag can occur:

The first occurrence of the property tag only contains the environment tag. This way, it makes all
environment variables available as "env.VARIABLE_NAME".

•

The second property tag contains only the file attribute. The value has to be a relative or absolute path
to a property file (for the format, see Appendix E).

•

11 01/29/2004 10:28:43 AM

The other times, the tag has a name and a value attribute. After the call, the value defined in the
attribute value is available through the key enclosed in "${" and "}".

•

The next noticeable thing in the build file is the <fileset> tag. It defines a fileset, i.e. a set of multiple files.
You can include and exclude Files with include and exclude tags within the fileset tag. For more information
concerning Filesets (i.e. Patterns) see Appendix C. The fileset is given an id attribute, so it can be referenced
later on.

The first task only contains a call to CopyTask via <copy>. The interesting thing is within the copy tag. Here,
a fileset task is not written out with nested include or exclude elements, but via the refid, the earlier create
Fileset is referenced. This way, you can use a once defined fileset multiple times in your build files.

The only noticeable thing in the second target is the call to PhingTask with the <phingcall> tag (see
Appendix B for more information. The task executes a specified target within the same build file. So, the
second target removes the build directory and calls main anew so the project is rebuilt.

12 01/29/2004 10:28:43 AM

Project Components
This goal of this chapter is to make you familiar with the basic components of a buildfile. After reading this
chapter, you should be able to read and understand the basic structure of any buildfile even if you don't know
exactly what the individual pieces do.

For supplemental reference information, you should see Appendix B, Appendix C and Appendix D.

Projects

In the structure of a Phing buildfile, there must be exactly one Project defined; the <project> tag is the root
element of the buildfile, meaning that everything else in the buildfile is contained within the <project >
element.

<?xml version="1.0"?>

<project name="test" description="Simple test build file" default="main" >
 <!−− Everything else here −−>
<project>

The listing above shows a sample <project> tag that has all attributes available for Projects. The name and
description attributes are fairly self−explanatory; the default attribute specifies the default Target to execute if
no target is specified (Targets are described below). For a complete reference, see Appendix D.

Project Components in General

Project components are everything you can be find inside a project. So Targets are project components, as are
Tasks, Types, etc. Project components may have attributes and nested tags. Attributes only contain simple
values, i.e. strings, integers etc. Nested elements may be complex Phing types (like FileSets) or simple
wrapper classes for values with custom keys (see FileSet for example).

Any nested elements must be supported by the class that implements the project component, and because the
nested tags are handled by the project component class the same nested tag may have different meanings (and
different attributes) depending on the context. So, for example, the nested tag <param.../> within the
<phingcall> tag is handled very differently from the<param.../> tag within the <xsltfilter> tag −− in the first
case setting project properties, in the second case setting XSLT parameters.

Targets

Targets are collections of project components (but not other targets) that are assigned a unique name within
their project. A target generally performs a specific task −− or calls other targets that perform specific tasks
−− and therefore a target is a bit like a function (but a target has no return value).

Targets may depend on other targets. For example, if target A depends on a target B, then when target A is
called to be executed, target B will be executed first. Phing automatically resolves these dependencies. You

13 01/29/2004 10:28:43 AM

cannot have circular references like: "target A depends on target B that depends on target A".

The following code snippet shows an example of the use of targets.

<target name="othertask" depends="buildpage" description="Whatever">
 <!−− Task calls here −−>
<target>

<target name="buildpage" description="Some description">
 <!−− Task calls here −−>
<target>

When Phing is asked to execute the othertask target, it will see the dependency and execute buildpage first.
Notice that the the dependency task can be defined after the dependent task.

Tasks

Tasks are responsible for doing the work in Phing. Basically, tasks are the individual actions that your
buildfile can perform. For example, tasks exist to copy a file, create a directory, TAR files in a directory.
Tasks may also be more complex such as XsltTask which copies a file and transforms the file using XSLT,
SmartyTask which does something similar using Smarty templates, or CreoleTask which executes SQL
statements against a specified DB. See Appendix B for descriptions of Phing tasks.

Tasks support parameters in the form of:

Simple parameters (i.e. strings) passed as XML attributes, or•
More complex parameters that are passed by nested tags•

Simple parameters are basically strings. For example, if you pass a value "A simple string." as a parameter, it
is evaluated as a string and accessible as one. You can also reference properties as described in Getting
Started.

Note: There are special values that are not mapped to strings, but to boolean values instead. The values true,
false, yes, no, on and off are translated to true/false boolean values.

<property name="myprop" value="value" override="true"/>

However, some tasks support more complex data types as parameters. These are passed to the task with nested
tags. Consider the following example:

<copy>
 <fileset dir=".">
 <include name="**" />
 </fileset>
</copy>

Here, CopyTask is passed a complex parameter, a Fileset. Tasks may support multiple complex types in
addition to simple parameters. Note that the names of the nested tags used to create the complex types depend

14 01/29/2004 10:28:43 AM

on the task implementation. Tasks may support default Phing types (see below) or may introduce other types,
for example to wrap key/value pairs.

Refer to Appendix B for a list of system tasks and their parameters.

Types

Basics

Besides the simple types (strings, integer, booleans) you can use in the parameters of tasks, there are more
complex Phing Types. As mentioned above, they are passed to a task by using nesting tags:

<task>
 <type />
</task>

<!−− or: −−>

<task>
 <type1>
 <subtype1>
 <!−− etc. −−>
 </subtype1>
 </type1>
</task>

Note that types may consist of multiple nested tags −− and multiple levels of nested tags, as you can see in the
second task call above.

Referencing Types

An additional fact about types you should notice is the possibility of referencing type instances, i.e. you
define your type somewhere in your build file and assign an id to it. Later, you can refer to that type by the id
you assigned. Example:

<project>
 <fileset id="foo">
 <include name="*.php" />
 </fileset;>

 <!−− Target that uses the type −−>
 <target name="foo" >
 <copy todir="/tmp">
 <fileset refid="foo" />
 </copy>
 </target>
</project>

As you can see, the type instance is assigned an id with the id attribute and later on called by passing a plain
fileset tag to CopyTask that only contains the refid attribute.

15 01/29/2004 10:28:43 AM

Basic Types

The following section gives you a quick introduction into the basic Phing types. For a complete reference see
Appendix C.

FileSet

FileSets are groups of files. You can include or exclude specific files and patterns to/from a FileSet. The use
of patterns is explained below. For a start, look at the following example:

<fileset dir="/tmp" id="fileset1">
 <include name="sometemp/file.txt" />
 <include name="othertemp/**" />
 <exclude name="othertemp/file.txt" />
</fileset>

<fileset dir="/home" id="fileset2">
 <include name="foo/**" />
 <include name="bar/**/*.php" />
 <exclude name="foo/tmp/**" />
</fileset>

The use of patterns is quite straightforward: If you simply want to match a part of a filename or dirname, you
use *. If you want to include multiple directories and/or files, you use **. This way, filesets provide an easy
but powerful way to include files.

FileList

FileLists, like FileSets, are collections of files; however, a FileList is an explicitly defined list of files −− and
the files don't necessarily have to exist on the filesystem.

Besides being able to refer to nonexistent files, another thing that FileLists allow you to do is specify files in a
certain order. Files in FileSets are ordered based on the OS−level directory listing functions, in some cases
you may want to specify a list of files to be processed in a certain order −− e.g. when concatenating files using
the <append> task.

<filelist dir="base/" files="file1.txt,file2.txt,file3.txt"/>

<!−− OR: −−>
<filelist dir="basedir/" listfile="files_to_process.txt"/>

FilterChains and Filters

FilterChains can be compared to Unix pipes. Unix pipes add a great deal of flexibility to command line
operations; for example, if you wanted to copy just those lines that contained the string blee from the first 10
lines of a file called foo to a file called bar, you could do:

cat foo | head −n10 | grep blee > bar

16 01/29/2004 10:28:43 AM

Something like this is not possible with the tasks and types that we have learned about thus far, and this is
where the incredible usefulness of FilterChains becomes apparent. They emulate Unix pipes and provide a
powerful dimension of file/stream manipulation for the tasks that support them.

FilterChain usage is quite straightforward: you pass the complex Phing type filterchain to a task that supports
FilterChains and add individual filters to the FilterChain. In the course of executing the task, the filters are
applied (in the order in which they appear in the XML) to the contents of the files that are being manipulated
by your task.

<filterchain>
 <replacetokens>
 <token key="BC_PATH" value="${top.builddir}/"/>
 <token key="BC_PATH_USER" value="${top.builddir}/testsite/user/${lang}/"/>
 </replacetokens>

 <filterreader classname="phing.filters.TailFilter">
 <param name="lines" value="10"/>
 </filterreader>
</filterchain>

The code listing above shows you some example of how to use filter chains. For a complete reference see
Appendix C. This filter chain would replace all occurences of BC_PATH and BC_PATH_USER with the
values assigned to them in lines 4 and 5. Additionally, it will only return the last 10 lines of the files.

Notice above that FilterChain filters have a "shorthand" notation and a long, generic notation. Most filters can
be described using both of these forms:

<replacetokens>
 <token key="BC_PATH" value="${top.builddir}/"/>
 <token key="BC_PATH_USER" value="${top.builddir}/testsite/user/${lang}/"/>
</replacetokens>

<!−− OR: −−>

<filterreader classname="phing.filters.ReplaceTokens">
 <param type="token" name="BC_PATH" value="${top.builddir}/"/>
 <param type="token" name="BC_PATH" value="${top.builddir}/testsite/user/${lang}/"/>
</filterreader>

As the pipe concept in Unix, the filter concept is quite complex but powerful. To get a better understanding of
different filters and how they can be used, take a look at any of the many uses of FilterChains in the build files
for the binarycloud [bc] project.

File Mappers

With FilterChains and filters provide a powerful tool for changing contents of files, Mappers provide a
powerful tool for changing the names of files.

To use a Mapper, you must specify a pattern to match on and a replacement pattern that describes how the
matched pattern should be transformed. The simplest form is basically no different from the DOS copy

17 01/29/2004 10:28:43 AM

command:

copy *.bat *.txt

In Phing this is the glob Mapper:

<mapper type="glob" from="*.bat" to="*.txt"/>

Phing also provides support for more complex mapping using regular expressions:

<mapper type="regexp" from="^(.*)\.conf\.xml$$" to="\1.php"/>

Consider the example below to see how Mappers can be used in a build file. This example includes some of
the other concepts introduced in this chapter, such as FilterChains and FileSets. If you don't understand
everything, don't worry. The important point is that Mappers are types too, which can be used in tasks that
support them.

<copy>
 <fileset dir=".">
 <include name="*.ent.xml" />
 </fileset>

 <mapper type="regexp" from="^(.*)\.ent\.xml$" to="\1.php"/>

 <filterchain>
 <filterreader classname="phing.filters.XsltFilter">
 <param name="style" value="ent2php.xsl" />
 </filterreader>
 </filterchain>
</copy>

For a complete reference, see Appendix C.

18 01/29/2004 10:28:43 AM

Extending Phing
Phing was designed to be flexible and easily extensible. Phing's existing core and optional tasks do provide a
great deal of flexibility in processing files, performing database actions, and even getting user feedback during
a build process. In some cases, however, the existing tasks just won't suffice and because of Phing's open,
modular architecture adding exactly the functionality you need is often quite trivial.

In this chapter we'll look primarily at how to create your own tasks, since that is probably the most useful way
to extend Phing. We'll also give some more information about Phing's design and inner workings.

Extension Possibilities

There are three main areas where Phing can be extended: tasks, types, mappers. The following sections
discuss these options.

Tasks

Tasks are pieces of codes that perform an atomic action like installing a file. Therefore a special worker class
hast to be created and stored in a specific location, that actually implements the job. The worker is just the
interface to Phing that must fulfill some requirements discussed later in this chapter, however it can − but not
necessarily must − use other classes, workers and libraries that aid performing the operations needed.

Types

Extending types is a rare need; nevertheless, you can do it. A possible type you might implement is urlset, for
example.

You may end up needing a new type for a task you write; for example, if you were writing the XSLTTask you
might discover that you needed a special type for XSLTParams (even though in that case you could probably
use the generic name/value Parameter type). In cases where the type is really only for a single task, you may
want to just define the type class in the same file as the Task class, rather than creating an official stand−alone
Type.

Mappers

Creating new mappers is also a rare need, since most everything can be handled by the RegexpMapper. The
Mapper framework does provide a simple way for defining your own mappers to use instead, however, and
mappers implement a very simple interface.

Source Layout

19 01/29/2004 10:28:43 AM

Files And Directories

Before you are going to start to extend Phing let's have a look at the source layout. You should be comfortable
with the organization of files witchin the source tree of Phing before start coding. After you extracted the
source distribution or checked it out from CVS you should see the following directory structure:

$PHING_HOME
 |−− bin
 |−− classes
 | `−− phing
 | |−− filters
 | | `−− util
 | |−− mappers
 | |−− parser
 | |−− tasks
 | | |−− ext
 | | |−− system
 | | | `−− condition
 | | `−− user
 | `−− types
 |−− docs
 | `−− phing_guide
 `−− test
 |−− classes
 `−− etc

The following table briefly describes the contents of the major directories:

Phing source tree directories

Directory Contents

bin
The basic applications (phing, configure) as well as the wrapper scripts for different
platforms (currently Unix and Windows).

classes
Repository of all the classes used by Phing. This is the base directory that should be on the
PHP include_path. In this directory you will find the subdirectory phing/ with all the
Phing relevant classes.

docs
Documentation files. Generated books, online manuals as well as the PHPDoc generated
API documentation.

test
A set of testcases for different tasks, mappers and types. If you are developing in CVS you
should add a testcase for each implementation you check in.

Currently there is no distinction between the source layout and the build layout of Phing. The figure above
shows the CVS tree that carries some additional files like the Phing website. Later on there may be a buildfile
to create a clean distribution tree of Phing itself.

File Naming Conventions

There are some filenaming conventions used by Phing. Here's a quick rundown on the most basic

20 01/29/2004 10:28:43 AM

conventions. A more detailed list can be found in [See Naming And Coding Standards]:

Filenames consist of no more or less than two elements: name and extension .•
Choose short descriptive filenames (must be less than 31 chars)•
Names must not contain dots.•
Files containing PHP code must end with the extension .php .•
There must be only one class per file (no procedural methods allowed, use a separate file for them),
with the exception of "inner"−type / helper classes that can be declared in the same file as the "outer" /
main class.

•

The name portion of the file must be named exactly like the class it contains.•
Buildfiles and configure rulesets must end with the extension .xml .•

Coding Standards

We are using PEAR coding standards. We are using a less strict version of these standards, but we do insist
that new contributions have phpdoc comments and make explicitly declarations about public/protected/private
variables and methods. If you have suggestions about improvements to Phing codebase, don't hesitate to let us
know.

System Initialization

PHP installations are typically quite customized −− e.g. different memory_limit, execution timeout values,
etc. The first thing that Phing does is modify PHP INI variables to create a standard PHP environment. This is
performed by the init layer of Phing that uses a three−level initialization procedure. It basically consists of
three different files:

Platform specific wrapper scripts in bin/•
Main application in bin/•
Phing class in classes/phing/•

At the first look this may seem to be unnecessary overhead. Why three levels of initialization? The main
reason why there are several entry points is that Phing is build so that other frontends (e.g. PHP−GTK) could
be used in place of the command line.

Wrapper Scripts

This scripts are technical not required but provided for the ease of use. Imagine you have to type every time
you want to build your project:

php −qC /path/to/phing/bin/phing.php −verbose all distro snapshot

Indeed that is not very elegant. Furthermore if you are lax in setting your environment variables these script
can guess the proper variables for you. However you should always set them.

The scripts are platform dependent, so you will find shell scripts for Unix like platforms (sh) as well as the
batch scripts for Windows platforms. If you set−up your path properly you can call Phing everywhere in your

21 01/29/2004 10:28:43 AM

system with this command−line (referring to the above example):

phing −v2 all distro

The Main Application (phing.php)

This is basically a wrapper for the Phing class that actually does all the logic for you. If you look at the
sourcecode for phing.php you will see that all real initialization is handled in the Phing class. phing.php is
simply the commandline entry point for Phing.

The Phing Class

Given that all the prior initialization steps passed successfully the Phing is included and Phing::startup() is
invoked by the main application script. It sets−up the system components, system constants ini−settings,
PEAR and some other stuff. The detailed start−up process is as follows:

Start Timer•
Set System Constants•
Set Ini−Settings•
Set Include Paths•

After the main application completed all operations (successfully or unsuccessfully) it calls
Phing::shutdown(EXIT_CODE) that takes care of a proper destruction of all objects and a gracefully
termination of the program by returning an exit code for shell usage (see [See Program Exit Codes] for a list
of exit codes).

System Services

The Exception system

Phing uses the PHP5 try/catch/throw Exception system. Phing defines a number of Exception subclasses for
more fine−grained handling of Exceptions. Low level Exceptions that cannot be handled will be wrapped in a
BuildException and caught by the outer−most catch() {} block.

Build Lifecycle

This section exists to explain −− or try −− how Phing "works". Particularly, how Phing procedes through a
build file and invokes tasks and types based on the tags that it encounters.

How Phing Parses Buildfiles

Phing uses an ExpatParser class and PHP's native expat XML functions to handle the parsing of build files.
The handler classes all extend the phing.parser.AbstractHandler class. These handler classes "handle" the tags
that are found in the buildfile.

22 01/29/2004 10:28:43 AM

Core tasks and datatypes are mapped to XML tag names in the defaults.properties files −− specifically
phing/tasks/defaults.properties and phing/types/defaults.properties.

It works roughly like this:

phing.parser.RootHandler is registered to handle the buildfile XML document1.
RootHanlder expects to find exactly one element: <project>. RootHandler invokes the ProjectHandler
with the attributes from the <project> tag or throws an exception if no <project> is found, or if
something else is found instead.

2.

ProjectHandler expects to find <target> tags; for these ProjectHandler invokes the TargetHandler.
ProjectHandler also has exceptions for handling certain tasks that can be performed at the top−level:
<resolve>, <taskdef>, <typedef>, and <property>; for these ProjectHandler invokes the TaskHandler
class. If a tag is presented that doesn't match any expected tags, then ProjectHandler assumes it is a
datatype and invokes the DataTypeHandler.

3.

TargetHandler expects all tags to be either tasks or datatypes and invokes the appropriate handler
(based on the mappings provided in the defaults.properties files).

4.

Tasks and datatypes can have nested elements, but only if they correspond to a create*() method in
the task or datatype class. E.g. a nested <param> tag must correspond to a createParam() method of
the task or datatype.

5.

... More to come ...

Writing Tasks

Creating A Task

We will start creating a rather simple task which basically does nothing more than echo a message to the
screen. See [below] for the source code and the following [below] for the XML definition that is used for this
task.

<?php

require_once "phing/Task.php";

class MyEchoTask extends Task {

 /**
 * The message passed in the buildfile.
 */
 private $message = null;

 /**
 * The setter for the attribute "message"
 */
 public function setMessage($str) {
 $this−>message = $str;
 }

 /**
 * The init method: Do init steps.

23 01/29/2004 10:28:43 AM

 */
 public function init() {
 // nothing to do here
 }

 /**
 * The main entry point method.
 */
 public function main() {
 print($this−>message);
 }
}

?>

This code contains a rather simple, but complete Phing task. It is assumed that the file is named
MyEchoTask.php and placed in classes/phing/tasks/my directory. We'll explain the source code in detail
shortly. But first we'd like to discuss how we should register the task to Phing so that it can be executed
during the build process.

Using the Task

The task shown [above] must somehow get called by Phing. Therefore it must be made available to Phing so
that the buildfile parser is aware a correlating XML element and it's parameters. Have a look at the
minimalistic buildfile example given in [the buildfile below] that does exactly this.

<?xml version="1.0" ?>

<project name="test" basedir="." default="myecho">
 <taskdef name="myecho" worker="phing.tasks.my.MyEcho" />

 <target name="test.myecho">
 <myecho message="Hello World" />
 </target>
</project>

Besides the XML document prolog and the shell elements that are required to properly execute the task
(project, target) you'll find the <taskdef> element (line 4) that properly registers your custom task to Phing.
For a detailed synopsis of the taskdef element see the [description of this task].

Now, as we have registered the task by assigning a name and the worker class ([see source code above]) it is
ready for usage within the <target> context (line 8). You see that we pass the message that our task should
echo to the screen via an XML attribute called "message".

Source Discussion

No that you've got the knowledge to execute the task in a buildfile it's time to discuss how everything works.

24 01/29/2004 10:28:43 AM

Task Structure

All files containing the definition of a task class follow a common well formed structure:

Package imports to import all required packages•
The class declaration and definition•
The class's properties•
The class's constructor•
Setter methods for each XML attribute•
The init() method•
The main() method•
Arbitrary private (or protected) class methods•

Package Imports

Always import all the packages/files needed for this task in full written notation. Furthermore you should
always import phing.Task at the very top of your import block. Then import all other required system or
proprietary packages. Import works quite similar to PHP's native include_once but with some Java−stylish
additions providing a file system independent notation.

For a more in−depth explanation of the used package mechanism and the package support API reference, see
[package support] For a list of stock packages provided with Phing, see [package list].

Class Declaration

If you look at line 5 in [the source code of the task] you will find the class declaration. This will be familiar to
you if you are experienced with OOP in PHP (we assume here that you are). Furthermore there are some
fine−grained rules you must obey when creating the classes (see also,[naming and coding standards]):

Your classname must be exactly like the taskname you are going to implement plus the suffix "Task".
In our example case the classname is MyEchoTask (constructed by the taskname "myecho" plus the
suffix "task"). The upper/lower case casing is currently only for better reading. However, it is
encouraged that you use it this way.

•

The task class you are creating must at least extend "Task" to inherit all task specific methods.•

Class Properties

The next lines you are coding are class properties. Most of them are inherited from the Task superclass, so
there's not need to redeclare them. Nevertheless you should declare the following ones by your own:

Taskname. Always hard code the taskname property that equals the name of the XML element that
your task claims. Currently this information is not used − but it will be in the future.

•

Your arbitrary properties that reflect the XML attributes/elements which your task accepts.•

In the MyEchoTask example the coded properties can be found in lines 7 to 11. Give you properties
meaningful descriptive names that clearly state their function within the context. A couple of properties are

25 01/29/2004 10:28:43 AM

inherited from the superclass that must not be declared in the properties part of the code.

For a list of inherited properties (most of them are reserved, so be sure not to overwrite them with your own)
can be found in the "Phing API Reference" in the docs/api/ directory.

The Constructor

The next block that follows is the class's constructor. It must be present and call at least the constructor or the
parent class. Of course, you can add some initialization data here. It is recommended that you define your
prior declared properties here.

Setter Methods

As you can see in the XML definition of our task ([see buildfile above] , line 9) there is an attribute defined
with the task itself, namely "message" with a value of the the text string that our task should echo. The task
must somehow become aware of the attribute name and the value. Therefore the setter methods exist.

For each attribute you want to import to the task's namespace you have to define a method named exactly after
the very attribute plus the string "Set" prepended. This method accepts exactly one parameter that holds the
value of the attribute. No you can set the value an class internal property to the value incoming via the setter
method.

In out example the setter is named SetMessage , because the XML attribute the echo task accepts is
"message". SetMessage now takes the string "Hello World" provided by the parser and sets the value of the
internal class property $strMessage to "Hello World". It is now available to the task for further disposal.

Creator Methods

Creator methods allow you to manage nested XML tags in your new Phing Task.

init() Method

The init method gets called when the <taskname> xml element closes. It must be implemented even if it does
nothing like in the example above. You can do init steps here required to setup your task object properly.
After calling the Init−Method the task object remains untouched by the parser. Init should not perform
operations related somehow to the action the task performs. An example of using init may be cleaning up the
$strMessage variable in our example (i.e. trim($strMessage)) or importing additional workers needed for this
task.

The init method should return true or an error object evaluated by the governing logic. If you don't implement
init method, phing will shout down with a fatal error.

main() Method

There is exactly one entry entry point to execute the task. It is called after the complete buildfile has been

26 01/29/2004 10:28:43 AM

parsed and all targets and tasks have been scheduled for execution. From this point forward the very
implementation of the tasks action starts. In case of our example a message (imported by the proper setter
method) is Logged to the screen through the system's "Logger" service (the very action this task is written
for). The Log() method−call in this case accepts two parameters: a event constant and the message to log.

For a in−depth list of system constants see See System Constants. For the detailed reference on the system's
logger see [REF] and the Phing API docs located in the docs/ subdirectory.

Arbitrary Methods

For the more or less simple cases (as our example) all the logic of the task is coded in the Main() method.
However for more complex tasks common sense dictates that particular action should be swapped to smaller,
logically contained units of code. The most common way to do this is separating logic into private class
methods − and in even more complex tasks in separate libraries.

private function myPrivateMethod() {
 // definition
}

More reading on this particular topic can be sound in See Naming And Coding Standards.

Summary

You now have learned how to create and use a task. However we guess there are much questions open
concerning task development: "How do I use filesets and mapper" or "How do I implement custom nested
tags in my task". Most of these concepts and the proper usage will be clear if you continue reading this doc.
Additionally you might check out the appendices for the advanced examples (See Advanced Task Example).

Writing Types

You should only create a standalone Type if the Type needs to be shared by more than one Task. If the Type
is only needed for a specific Task −− for example to handle a special parameter or other tag needed for that
Task −− then the Type class should just be defined within the same file as the Task. (For example,
phing/filters/XSLTFilter.php also includes an XSLTParam class that is not used anywhere else.)

For cases where you do need a more generic Type defined, you can create your own Type class −− similar to
the way a Task is created [Writing Tasks].

Creating a DataType

Type classes need to extend the abstract DataType class. Besides providing a means of categorizing types, the
DataType class provides the methods necessary to support the "refid" attribute. (All types can be given an id,
and can be referred to later using that id.)

In this example we are creating a DSN type because we have written a number of DB−related Tasks, each of
which need to know how to connect to the database; instead of having database parameters for each task,

27 01/29/2004 10:28:43 AM

we've created a DSN type so that we can identify the connection params once and then use it in all our db
Tasks.

require_once "phing/types/DataType.php";

/**
 * This Type represents a DB Connection.
 */
class DSN extends DataType {

 private $url;
 private $username;
 private $password;
 private $persistent = false;

 /**
 * Sets the URL part: mysql://localhost/mydatabase
 */
 public function setUrl($url) {
 $this−>url = $url;
 }

 /**
 * Sets username to use in connection.
 */
 public function setUsername($username) {
 $this−>username = $username;
 }

 /**
 * Sets password to use in connection.
 */
 public function setPassword($password) {
 $this−>password = $password;
 }

 /**
 * Set whether to use persistent connection.
 * @param boolean $persist
 */
 public function setPersistent($persist) {
 $this−>persistent = (boolean) $persist;
 }

 public function getUrl(Project $p) {
 if ($this−>isReference()) {
 return $this−>getRef($p)−>getUrl($p);
 }
 return $this−>url;
 }

 public function getUsername(Project $p) {
 if ($this−>isReference()) {
 return $this−>getRef($p)−>getUsername($p);
 }
 return $this−>username;
 }

28 01/29/2004 10:28:43 AM

 public function getPassword(Project $p) {
 if ($this−>isReference()) {
 return $this−>getRef($p)−>getPassword($p);
 }
 return $this−>password;
 }

 public function getPersistent(Project $p) {
 if ($this−>isReference()) {
 return $this−>getRef($p)−>getPersistent($p);
 }
 return $this−>persistent;
 }

 /**
 * Gets a combined hash/array for DSN as used by PEAR.
 * @return array
 */
 public function getPEARDSN(Project $p) {
 if ($this−>isReference()) {
 return $this−>getRef($p)−>getPEARDSN($p);
 }

 include_once 'DB.php';
 $dsninfo = DB::parseDSN($this−>url);
 $dsninfo['username'] = $this−>username;
 $dsninfo['password'] = $this−>password;
 $dsninfo['persistent'] = $this−>persistent;

 return $dsninfo;
 }

 /**
 * Your datatype must implement this function, which ensures that there
 * are no circular references and that the reference is of the correct
 * type (DSN in this example).
 *
 * @return DSN
 */
 public function getRef(Project $p) {
 if (!$this−>checked) {
 $stk = array();
 array_push($stk, $this);
 $this−>dieOnCircularReference($stk, $p);
 }
 $o = $this−>ref−>getReferencedObject($p);
 if (!($o instanceof DSN)) {
 throw new BuildException($this−>ref−>getRefId()." doesn't denote a DSN");
 } else {
 return $o;
 }
 }

}

29 01/29/2004 10:28:43 AM

Using the DataType

The TypedefTask provides a way to "declare" your type so that you can use it in your build file. Here is how
you would use this type in order to define a single DSN and use it for multiple tasks. (Of course you could
specify the DSN connection params each time, but the premise behind needing a DSN datatype was to avoid
specifying the connection parameters for each task.)

<?xml version="1.0" ?>

<project name="test" basedir=".">

 <typedef name="dsn" worker="myapp.types.DSN" />

 <dsn
 id="maindsn"
 url="mysql://localhost/mydatabase"
 username="root"
 password=""
 persistent="false" />

 <target name="main">

 <my−special−db−task>
 <dsn refid="maindsn"/>
 </my−special−db−task>

 <my−other−db−task>
 <dsn refid="maindsn"/>
 </my−other−db−task>

 </target>

</project>

Source Discussion

Getters & Setters

You must provide a setter method for every attribute you want to set from the XML build file. It is good
practice to also provide a getter method, but in practice you can decide how your tasks will use your task. In
the example above, we've provided a getter method for each attribute and we've also provided an additional
method: DSN::getPEARDSN() which returns the DSN hash array used by PEAR::DB, PEAR::MDB, and
Creole. Depending on the needs of the Tasks using this DataType, we may only wish to provide the
getPEARDSN() method rather than a getter for each attribute.

Also important to note is that the getter method needs to check to see whether the current DataType is a
reference to a previously defined DataType −− the DataType::isReference() exists for this purpose. For this
reason, the getter methods need to be called with the current project, because References are stored relative to
a project.

30 01/29/2004 10:28:43 AM

The getRef() Method

The getRef() task needs to be implemented in your Type. This method is responsible for returning a
referenced object; it needs to check to make sure the referenced object is of the correct type (i.e. you can't try
to refer to a RegularExpresson from a DSN DataType) and that the reference is not circular.

You can probably just copy this method from an existing Type and make the few changes that customize it to
your Type.

Writing Mappers

Writing your own filename mapper classes will allow you to control how names are transformed in tasks like
CopyTask, MoveTask, XSLTTask, etc. In some cases you may want to extend existing mappers (e.g. creating
a GlobMapper that also transforms to uppercase); in other cases, you may simply want to create a very
specific name transformation that isn't easily accomplished with other mappers like GlobMapper or
RegexpMapper.

Creating a Mapper

Writing filename mappers is simplified by interface support in PHP5. Essentially, your custom filename
mapper must implement phing.mappers.FileNameMapper. Here's an example of a filename mapper that
creates DOS−style file names. For this example, the "to" and "from" attributes are not needed because all files
will be transformed. To see the "to" and "from" attributes in action, look at phing.mappers.GlobMapper or
phing.mappers.RegexpMapper.

require_once "phing/mappers/FileNameMapper.php";

/**
 * A mapper that makes those ugly DOS filenames.
 */
class DOSMapper implements FileNameMapper {

 /**
 * The main() method actually performs the mapping.
 *
 * In this case we transform the $sourceFilename into
 * a DOS−compatible name. E.g.
 * ExtendingPhing.html −> EXTENDI~.DOC
 *
 * @param string $sourceFilename The name to be coverted.
 * @return array The matched filenames.
 */
 public function main($sourceFilename) {

 $info = pathinfo($sourceFilename);
 $ext = $info['extension'];
 // get basename w/o extension
 $bname = preg_replace('/\.\w+\$/', '', $info['basename']);

 if (strlen($bname) > 8) {
 $bname = substr($bname,0,7) . '~';

31 01/29/2004 10:28:43 AM

 }

 if (strlen($ext) > 3) {
 $ext = substr($bname,0,3);
 }

 if (!empty($ext)) {
 $res = $bname . '.' . $ext;
 } else {
 $res = $bname;
 }

 return (array) strtoupper($res);
 }

 /**
 * The "from" attribute is not needed here, but method must exist.
 */
 public function setFrom($from) {}

 /**
 * The "from" attribute is not needed here, but method must exist.
 */
 public function setTo($to) {}

}

Using the Mapper

Assuming that this mapper is saved to myapp/mappers/DOSMapper.php (relative to a path on PHP's
include_path or in PHP_CLASSPATH env variable), then you would refer to it like this in your build file:

<mapper classname="myapp.mappers.DOSMapper"/>

32 01/29/2004 10:28:43 AM

Appendix A: Fact Sheet

Built−In Properties

Phing Built−In Properties

Property Contents

application.startdirCurrent work directory

host.arch Name of the host machine. Not available on Windows machines.

host.domain DNS domain name, i.e. php.net. Not available on Windows machines.

host.fstype The type of the filesystem. Possible values are UNIX, WINNT and WIN32

host.machine System architecture, i.e. i586. Not available on Windows machines.

host.name
Operating System name as returned by posix_uname(). Not available on Windows
machines.

host.os.release Operating version release, i.e. 2.2.10. Not available on Windows machines.

host.os.version
Operating system version, i.e. #4 Tue Jul 20 17:01:36 MEST 1999. Not available on
Windows machines.

line.separator
Character(s) that signal the end of a line, "\n" for Linux, "\r\n" for Windows system, "\r"
for Macintosh.

php.classpath The value of the environment variable PHP_CLASSPATH

php.version
Version of the PHP interpreter. Same as PHP constant PHP_VERSION (see PHP
Manual).

phing.buildfile Full path to current buildfile

phing.id ID of hte current phing instance

phing.version
Current Phing version. This property equals the value of the PHP constant PHP_OS (see
PHP Manual. Possible values are Linux, Win32 and WINNT, for example.

project.name Name of the currently processed project.

project.basedir The current project basedir

project.descriptionThe description of the currently processed project.

user.home Value of the environment variable HOME.

Command Line Arguments

Currently, the following command line arguments listed in table below are currently available.

Phing Command Line Arguments

Parameter Meaning

−quiet Quiet operation, no output at all

−verbose Verbose, give some output

−debug Output debug information

33 01/29/2004 10:28:43 AM

http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php

−buildfile [builfile] Specify an alternate builfile name. Default is build.xml

−logger path.to.Logger
Specify an alternate logger. Default is phing.listener.DefaultLogger.
Other options include phing.listener.NoBannerLogger and
phing.listener.AnsiColorLogger

−help Display the help screen

−projecthelp List the available targets for this project

TODO Complete this

Distribution File Layout

$PHING_HOME
 |−− bin
 |−− classes
 | `−− phing
 | |−− filters
 | | `−− util
 | |−− mappers
 | |−− parser
 | |−− tasks
 | | |−− ext
 | | |−− system
 | | | `−− condition
 | | `−− user
 | `−− types
 |−− docs
 | `−− phing_guide
 `−− test
 |−− classes
 `−− etc

Program Exit Codes

Phing is script−safe − means that you can execute Phing and Configure within a automated script context. To
check back the success of a Phing call it returns an exit code that can be captured by your calling script. The
following list gives you details on the used exit codes and their meaning.

Program Exit Codes

Exitcode Description

−2 Environment not properly defined

−1 Parameter error occured, printed help screen

0 Successful execution, no warnings, no errors

1 Successful execution, but warnings occured

34 01/29/2004 10:28:43 AM

The LGPL License

Source http://www.gnu.org/licenses/lgpl.txt

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software−−to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages−−typically libraries−−of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two−step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that

35 01/29/2004 10:28:43 AM

http://www.gnu.org/licenses/lgpl.txt

there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non−free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non−free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de−facto standard. To achieve this, non−free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non−free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non−free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non−free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and

36 01/29/2004 10:28:43 AM

modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

37 01/29/2004 10:28:43 AM

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well−defined independent of the
 application. Therefore, Subsection 2d requires that any
 application−supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

38 01/29/2004 10:28:43 AM

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine−readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work

39 01/29/2004 10:28:43 AM

during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine−readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine−readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface−compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side−by−side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise

40 01/29/2004 10:28:43 AM

permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty−free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is

41 01/29/2004 10:28:43 AM

implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

42 01/29/2004 10:28:43 AM

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

43 01/29/2004 10:28:43 AM

Appendix B: Core Tasks
This appendix contains a reference of all core tasks, i.e. all tasks that are needed to build a basic project. If
you are looking for binarycloud related tasks, look in appendix ?.

This reference lists the tasks alphabetically by the name of the classes that implement the tasks. So if you are
searching for the reference to the <copy> tag, for example, you will want to look at the reference of
CopyTask.

AdhocTaskdefTask

The AdhocTaskdefTask allows you to define a task within your build file.

<target name="main"
 description="==>test AdhocTask ">

 <adhoc−task name="foo"><![CDATA[
 class FooTest extends Task {
 private $bar;

 function setBar($bar) {
 $this−>bar = $bar;
 }

 function main() {
 $this−>log("In FooTest: " . $this−>bar);
 }
 }
]]></adhoc−task>

 <foo bar="B.L.I.N.G"/>
</target>

Note that you should use <![CDATA[...]]> so that you don't have to quote entities within your
<adhoc−task></adhoc−task> tags.

Parameters

Name Type Description Default Required

name String Name of XML tag that will represent this task.n/a Yes

AdhocTypedefTask

The AdhocTaskdefTask allows you to define a datatype within your build file.

<target name="main"
 description="==>test AdhocType">

 <adhoc−type name="dsn"><![CDATA[
 class CreoleDSN extends DataType {

44 01/29/2004 10:28:43 AM

 private $url;

 function setUrl($url) {
 $this−>url = $url;
 }

 function getUrl() {
 return $this−>url;
 }
 }
]]></adhoc−type>

 <!−− creole−sql task doesn't exist; just an example −−>
 <creole−sql file="test.sql">
 <dsn url="mysql://root@localhost/test"/>
 </creole−sql>

</target>

Note that you should use <![CDATA[...]]> so that you don't have to quote entities within your
<adhoc−type></adhoc−type> tags.

Parameters

Name Type Description Default Required

name String Name of XML tag that will represent this datatype..n/a Yes

AppendTask

The Append Task appends text or contents of files to a specified file.

<append destFile="${process.outputfile}">
 <filterchain>
 <xsltfilter style="${process.stylesheet}">
 <param name="mode" expression="${process.xslt.mode}"/>
 </xsltfilter>
 </filterchain>
 <filelist dir="book/" listfile="book/PhingGuide.book"/>
</append>

In the example above, AppendTask is reading a filename from book/PhingGuide.book, processing the file
contents with XSLT, and then appending the result to the file located at ${process.outputfile}. This is a real
example from the build file used to generate this book!

Parameters

Name Type Description Default Required

destFileFile Path of file to which text should be appended.n/a Yes

file File Path to file that should be appended to destFile.n/a Yes

text String Some literal text to append to file. n/a No

45 01/29/2004 10:28:43 AM

Supported Nested Tags

FileList•
FilterChain•

AvailableTask

Available Task tests if a resource/file is set and sets a certain property to a certain value if it exists.

<available file="/tmp/test.txt" property="test_txt_exists" value="Yes"/>

<available file="/home/foo" type="dir" property="properties.yetanother" />

<available file="/home/foo/bar" property="foo.bar" value="Well, yes" />

Here, AvailableTask first checks for the existance of either file or directory named test.txt in /tmp. Then, it
checks for the directory foo in /home and then for the file or directory bar in /home/foo. If /tmp/test.txt is
found, the property test_txt_exists is set to "Yes", if /home/foo is found and a directory, properties.yetanother
is set to "true" (default). If /home/foo/bar exists, AvailableTask will set foo.bar to "Well, yes".

Parameters

Name Type Description Default Required

property string Name of the property that is to be set. n/a Yes

value String The value the propert is to be set to. "true" No

file String File/directory to check existance. n/a
Yes (or
resource)

resourceString Path of the resource to look for. n/a
Yes (or
file)

type
String
(file|dir)

Determines if AvailableTask should look for a file or a directory
at the position set by file. If empty, it checks for either file or
directory.

n/a No

CallTargetTask

The CallTargetTask calls a target from the same project. A <project> tag may contain <property> tags that
define new properties. In the following example, the properties property1 and foo are defined and only
accessible inside the called target.

However, this will only work if the properties are not yet set outside the "phingcall" tag.

Example

<target name="foo">
 <phingcall target="bar">
 <property name="property1" value="aaaaa" />

46 01/29/2004 10:28:43 AM

 <property name="foo" value="baz" />
 </phingcall>
</target>

<target name="bar" depends="init">
 <echo message="prop is ${property1} ${foo}" />
</target>

Parameters

Name Type/Values Description Default Required

target string The name of the target in the same project that is to be called.n/a Yes

CopyTask

The phing Copy Task. Copies a file or directory to a new file or directory. Files are only copied if the source
file is newer than the destination file, or when the destination file does not exist. It is possible to explictly
overwrite existing files.

Example

On the one hand, CopyTask can be used to copy file by file:

<copy file="somefile.txt" tofile="/tmp/anotherfile.bak" overwrite="true"/>

Additionally, CopyTask supports Filesets, i.e. you can easily include/exclude one or more files. For more
information, see Appendix C. Mappers and Filterchains are also supported by CopyTask, so you can do almost
everything that needs processing the content of the files or the filename.

Notice: CopyTask does not allow self copying, i.e. copying a file to the same name for security reasons.

<copy todir="/tmp/backup" >
 <fileset dir=".">
 <include name="**/*.txt">
 <include name="**/*.doc">
 <include name="**/*.swx">
 </fileset>
</copy>

Attributes

Name Type Description Default Required

file String The source file. Yes

tofile String

The destination the file is to be written to. tofile specifies a
full filename. If you only want to specify a directory to copy
to, use todir.

Either this or the todir attribute is required.

n/a
Yes (or
todir)

47 01/29/2004 10:28:43 AM

todir String
The directory the file is to be copied to. The file will have the
same name of the source file. If you want to specify a
different name, use tofile.

n/a
Yes (or
tofile)

overwrite BooleanIf set to true, the target file will be overwritten. false No

tstamp Boolean
If set to true, the new file will have the same mtime as the
old one.

false No

includeemptydirsBooleanIf set to true, also empty directories are copied. true No

Supported Nested Tags

Fileset•
Filterchain•
Mapper•

DeleteTask

Deletes a file or directory, or set of files defined by a fileset. See Appendix C for information on Filesets.

Example

<−− Delete a specific file from a directory −−>
<delete file="foo.bar" dir="/tmp" />

<−− Delete a directory −−>
<delete dir="/tmp/darl" includeemptydirs="true" verbose="true" failonerror="true" />

Attributes

Name Type Description Default Required

file String
The file that is to be deleted. You either have to specify this
attribute, or dir or both.

n/a Yes

dir String
The directory that is to be deleted. You either have to specify
this attribute, or file or both.

n/a
Yes (or
file)

verbose BooleanUsed to force listing of all names of deleted files. n/a Yes

quiet Boolean

If the file does not exist, do not display a diagnostic message
or modify the exit status to reflect an error. This means that if
a file or directory cannot be deleted, then no error is reported.

This setting emulates the −f option to the Unix rm command.
Default is false meaning things are verbose

n/a Yes

failonerror Boolean
If this attribute is set to true, DeleteTask will verbose on errors
but the build process will not be stopped.

true Yes

includeemptydirsBooleanDetermines if empty directories are also to be deleted. false False

48 01/29/2004 10:28:43 AM

Supported Nested Tags

Fileset•

EchoTask

This task simply verboses a string.

Example

<echo msg="Phing rocks!" />

<echo message="Binarycloud, too." />

<echo>And don't forget Propel.</echo>

Attributes

Name Type Description Default Required

msg String The string that is to be send to the output.n/a Yes

messageString Alias for msg. n/a Yes

ExecTask

Executes a shell command. You can use this to quickly add a new command to Phing. However, if you want
to use this regularly, you should think about writing a Task for it.

Example

<−− List the contents of "/home". −−>
<exec command="ls −l" dir="/home" />

<−− Start the make process in "/usr/src/php−4.0". −−>
<exec command="make" dir="/usr/src/php−4.0" />

<−− List the contents of "/tmp" out to a file. −−>
<exec command="ls −l" "/tmp > foo.out" escape="false" />

Attributes

Name Type Description Default Required

commandString The command that is to be executed. n/a Yes

dir String The directory the command is to be executed in. n/a Yes

os String Only execute if os.name contains specified text. n/a No

49 01/29/2004 10:28:43 AM

escape Boolean
By default, we escape shell metacharacters before executing. Setting
this to false will disable this precaution.

TRUE No

ForeachTask

The foreach task iterates over a list, a list of paths, or both. If both, list and paths, are specified, the list will be
evaluated first. Nested paths are evaluated in the order they appear in the task.

Example

<!−− loop through languages, and call buildlang task with setted param −−>
<foreach list="languages" param="lang" target="buildlang" />

Attributes

Name Type Description Default Required

list string
The list of values to process, with the delimiter character, indicated by the
"delimiter" attribute, separating each value.

n/a Yes

target string
The target to call for each token, passing the token as the parameter with
the name indicated by the "param" attribute.

n/a Yes

param string The name of the parameter to pass the tokens in as to the target. n/a Yes

delimiter string
The delimiter string that separates the values in the "list" parameter. The
default is ",".

, No

InputTask

The InputTask can be used to interactively set property values based on input from the console (or other
Reader).

Example

<echo>HTML pages installing to: ${documentRoot}</echo>
<echo>PHP classes installing to: ${servletDirectory}</echo>

<input propertyname="documentRoot">Web application document root</input>
<input propertyname="servletDirectory"
 defaultValue="/usr/servlets" promptChar="?">PHP classes install dir</input>

<echo>HTML pages installed to ${documentRoot}</echo>
<echo>PHP classes installed to ${servletDirectory}</echo>

Attributes

Name Type Description Default Required

propertyNameString The name of the property to set. n/a Yes

defaultValue String The default value to be set if no new value is provided.n/a Yes

50 01/29/2004 10:28:43 AM

message String Prompt text (same as CDATA). n/a No
promptChar String The prompt character to follow prompt text. n/a No

MkdirTask

Create a directory.

Example

<−− Create a temp directory −−>
<mkdir dir="/tmp/foo" />

<−− Using mkdir with a property −−>
<mkdir dir="{$dirs.install}/tmp" />

Attributes

Name Type Description Default Required

dir String The directory that is to be created.n/a Yes

MoveTask

Moves a file or directory to a new file or directory. By default, the destination file is overwritten if it already
exists. When overwrite is turned off, then files are only moved if the source file is newer than the destination
file, or when the destination file does not exist.

Source files and directories are only deleted if the file or directory has been copied to the destination
successfully.

Example

<−− The following will move the file "somefile.txt" to "/tmp" and
 change its filename to "anotherfile.bak". It will overwrite
 an existing file. −−>
<move file="somefile.txt" tofile="/tmp/anotherfile.bak" overwrite="true"/>

<−− This will move the "/tmp" directory to "/home/default/tmp",
 preserving the directory name. So the final name is
 "/home/default/tmp/tmp". Empty directories are also copied −−>
<move file="/tmp" todir="/home/default/tmp" includeemptydirs="true" />

Attributes and Nested Elements

For further documentation, see CopyTask, since MoveTask only is a child of CopyTask and inherits all
attributes.

51 01/29/2004 10:28:43 AM

PhingTask

This task calls another build file. You may specify the target that is to be called within the build file.
Additionally, the <phing> Tag may contain <property> Tags (see PropertyTask).

Example

<−− Call target "xslttest" from buildfile "alternativebuildfile.xml" −−>
 <phing phingfile="alternativebuild.xml" inheritRefs="true" target="xslttest" />

<−− Do a more complex call −−>
<phing phingfile="somebuild.xml" target="sometarget">
 <property name="foo" value="bar">
 <property name="anotherone" value="32">
</phing>

Attributes

Name Type Description Default Required

inheritAll BooleanIf true, pass all properties to the new phing project. true No

inheritRefsBooleanIf true, pass all references to the new phing project. false No

dir String

The directory to use as a base directory for the new phing project.
Default is the current project's basedir, unless inheritall has been set
to false, in which case it doesn't have a default value. This will
override the basedir setting of the called project.

n/a No

phingFile String
The build file to use. Defaults to "build.xml". This file is expected to
be a filename relative to the dir attribute given.

n/a Yes

target String
The target of the new Phing project to execute. Default is the new
project's default target.

n/a No

Supported Nested Tags

Fileset•

Base directory of the new project

The base directory of the new project is set dependant on the dir and the inheritAll attribute. This is important
to keep in mind or else you might run into bugs in your build.xml's. The following table shows when which
value is used:

dir attribute inheritAll attribute new project's basedir

value provided true value of dir attribute

value provided false value of dir attribute

omitted true
basedir of calling task (the build file containing the
<phing> call.

52 01/29/2004 10:28:43 AM

omitted false
basedir attribute of the <project> element of the new
project

PearPackageTask

With the PearPackageTask, you can create a package.xml which can be installed using the PEAR installer.
Use this in conjunction with the TarTask to completely script the building of a PEAR pacakge.

This task uses the PEAR_PackageFileManager class. In order to be maximally flexible, the majority of
options are set generically (using <option> tag) and are set using PEAR_PackageFileManager::setOptions().
Use the <mapping> tag to represent complex values (which are turned into associative arrays and also set
using setOptions() method).

Example

<pearpkg name="phing" dir="${build.src.dir}" destFile="${build.base.dir}/package.xml">
<fileset>
 <include name="**"/>
</fileset>
<option name="notes">Sample release notes here.</option>
<option name="description">Package description</option>
<option name="summary">Short description</option>
<option name="version" value="2.0.0b1"/>
<option name="state" value="beta"/>
 <mapping name="maintainers">
 <element>
 <element key="handle" value="hlellelid"/>
 <element key="name" value="Hans"/>
 <element key="email" value="hans@xmpl.org"/>
 <element key="role" value="lead"/>
 </element>
</mapping>
</pearpkg>

Attributes

Name Type Description Default Required

name String The name of the PEAR package. n/a Yes

dir String The base directory of files to add to package.n/a Yes

destFileString The file to create. package.xml in base directoryNo

Supported Nested Tags

fileset•
option•
mapping•

53 01/29/2004 10:28:43 AM

PhpEvalTask

With the PhpEvalTask, you can set a property to the results of evaluating a PHP expression or the result
returned by a function/method call.

Examples

<php function="crypt" returnProperty="enc_passwd">
 <param value="${auth.root_passwd}"/>
</php>

<php expression="3 + 4" returnProperty="sum"/>

Attributes

Name Type Description Default Required

function String The name of the Property. n/a One of these is
required.expression String The expression to evaluate. n/a

class String The static class which contains function. n/a No

returnPropertyString
The name of the property to set with result of expression
or function call.

n/a No

Supported Nested Tags

param•

PropertyTask

With PropertyTask, you can define user properties in your build file.

Example

<property name="strings.test" value="Harr harr, more power!" />
<echo message="{$strings.text}" />

<property name="foo.bar" value="Yet another property..." />
<echo message="{$foo.bar}" />

Attributes

Name Type Description Default Required

name String The name of the Property. n/a Yes

value String The value of the Property. n/a Yes

overrideBooleanWhether to force override of existing value.false No

54 01/29/2004 10:28:43 AM

ReflexiveTask

The ReflexiveTask performs operations on files. It is essentially a convenient way to transform (using filter
chains) files without copying them.

Example

<reflexive>
 <fileset dir=".">
 <include pattern="*.html">
 </fileset>
 <filterchain>
 <replaceregexp>
 <regexp pattern="\n\r" replace="\n"/>
 </replaceregexp>
 </filterchain>
</reflexive>

Attributes

Name Type Description Default Required

file String A single file to be processed. n/a
Yes (unless <fileset>
provided)

Supported Nested Tags:

fileset•
filterchain•

ResolvePathTask

The ResolvePathTask turns a relative path into an absolute path, with respect to specified directory or the
project basedir (if no dir attribute specified).

This task is useful for turning a user−defined relative path into an absolute path in cases where buildfiles will
be called in different directories. Without this task, buildfiles lower in the directory tree would mis−interpret
the user−defined relative paths.

Example

<property name="relative_path" value="./dirname"/>

<resolve propertyName="absolute_path" file="${relative_path}"/>

<echo>Resolved [absolute] path: ${absolute_path}</echo>

55 01/29/2004 10:28:43 AM

Attributes

Name Type Description Default Required

file String The file or directory path to resolve. n/a Yes

dir File The base directory to use when resolving "file". project.basedirNo

propertyNameString
The name of the property to set with resolved (absolute)
path.

n/a Yes

TarTask

The TarTask creates a tarball from a fileset or directory.

Example

<tar destfile="phing.tar" basedir="." compression="gzip">
 <fileset dir=".">
 <include name="**/**" />
 </fileset>
</tar>

The above example uses a fileset to determine which files to include in the archive.

Attributes

Name Type Description Default Required

destfile String Tarball filename n/a Yes

basedir String
Base directory to tar (if no fileset specified, entire directory contents
will be included in tar)

none No

compressionString Type of compression to use (gzip, bzip2, none) none No

Supported Nested Tags

fileset•

TaskdefTask

With the TaskdefTask you can import a user task into your buildfile.

Example

<!−− Includes the Task named "ValidateHTMLTask" and makes it available by
 <validatehtml> −−>
<taskdef classname="user.tasks.ValidateHTMLTask" name="validatehtml" />

<!−− Includes the Task "RebootTask" from "user/sometasks" somewhere inside
 the $PHP_CLASSPATH −−>
<taskdef classname="user.sometasks.RebootTask" name="reboot" />

56 01/29/2004 10:28:43 AM

Attributes

Name Type Description Default Required

classname StringThe path to the class that defines the TaskClass. n/a Yes

name String
The name the task is available as after importing. If you specify
"validate", for example, you can access the task imported here with
<validate>.

n/a Yes

classpath String
The classpath to use when including classes. This is added to PHP's
include_path.

n/a No

classpathrefString
Reference to classpath to use when including classes. This is added to
PHP's include_path.

n/a No

Supported Nested Tags

classpath•

TouchTask

The TouchTask works like the Unix touch command: It sets the modtime of a file to a specific time. Default is
the current time.

Example

<touch file="README.txt" millis="102134111" />

<touch file="COPYING.lib" datetime="10/10/1999 09:31 AM" />

Attributes

Name Type Description Default Required

file String The file which time is to be changed. n/a No

datetimeDateTime
The date and time the mtime of the file is to be set to. The format is
"MM/DD/YYYY HH:MM AM or PM"

now No

millis Integer The millisecons since midnight Jan 1 1970 (Unix epoche). now No

TypedefTask

With the TypedefTask you can import a user task into your buildfile.

Example

<!−− Includes the Type named "CustomProject" and makes it available by
 <cproject> −−>
<taskdef classname="user.types.CustomProject" name="cproject" />

57 01/29/2004 10:28:43 AM

Attributes

Name Type Description Default Required

classname StringThe path to the class that defines the type class. n/a Yes

name String
The name the type is available as after importing. If you specify
"cproject", for example, you can access the type imported here with
<cproject>.

n/a Yes

classpath String
The classpath to use when including classes. This is added to PHP's
include_path.

n/a No

classpathrefString
Reference to classpath to use when including classes. This is added to
PHP's include_path.

n/a No

Supported Nested Tags

classpath•

UpToDateTask

Available Task tests if a resource/file is set and sets a certain property to a certain value if it exists.

<uptodate property="propelBuild.notRequired" targetfile="${deploy}\propelClasses.tgz" >
 <srcfiles dir= "${src}/propel" includes="**/*.php"/>
</uptodate>

sets the property propelBuild.notRequired to true if the ${deploy}/propelClasses.tgz file is more up−to−date
than any of the PHP class files in the ${src}/propel directory.

Parameters

Name Type Description Default Required

property string Name of the property that is to be set. n/a Yes

value String The value the propert is to be set to. "true" No

srcfile String The file to check against target file(s). n/a
Yes (or nested
srcfiles)

targetfile String The file for which we want to determine the status. n/a
Yes (or nested
mapper)

Supported Nested Tags

FileSet•
Mapper•

58 01/29/2004 10:28:43 AM

XsltTask

With XsltTask, you can run a XSLT tranformation on an XML file. Actually, XsltTask extends CopyTask, so
you can use all the elements allowed there.

Example

<!−− Transform docbook with an imaginary XSLT file −−>
<xslt todir="/srv/docs/phing"tyle="dbk2html.xslt" >
 <fileset dir=".">
 <include name="**/*.xml" />
 </fileset>
</xslt>

Attributes

Name Type Description Default Required

style String The path where the Xslt file is locatedn/a Yes
Note: You can also use all the attributes available for CopyTask.

Suppported Nested Elements

Note: You can use all the elements also available for CopyTask.

Additionally, you can use <param> tags with a name and a value attribute. These parameters are then
available from within the xsl style sheet.

59 01/29/2004 10:28:43 AM

Appendix C: Core Types
This appendix contains a reference of the system data types contained in Phing.

FileList

FileLists offer a way to represent a specific list of files. Unlike FileSets, FileLists may contain files that do not
exist on the filesystem. Also, FileLists can represent files in a specific order −− whereas FileSets represent
files in whichever order they are returned by the filesystem.

Usage Examples

<filelist dir="/etc" files="httpd/conf/httpd.conf,php.ini"/>

Or you can use a listfile, which is expected to contain one filename per line:

<filelist dir="conf/" listfile="ini_files.txt"/>

This will grab each file as listed in ini_files.txt. This can be useful if one task compiles a list of files to process
and another task needs to read in that list and perform some action to those files.

Attributes

Attributes for the <fileset> tag

Name Type Description Default Required

dir String The directory, to which the paths given in files or listfile are relative.n/a Yes

files String Comma or space−separated list of files. n/a
Yes (or
listfile)

listfile String A text file with one filename per line. n/a
Yes (or
files)

FileSet

Filesets offer a easy and straigtforward way to include files. You can include/exclude files in/from a fileset
using the <include>/<exclude> tags. In patterns, one asterisk (*) maps to a part of a file/directory name
within a directory level. Two asterisks (**) may include above the "border" of the directory separator.

Examples

test*.xml will include test_42.xml, but it will not include test/some.xml.•
test**.xml fits to test_42.xml as well as to test/bla.xml, for example.•
**/*.ent.xml fits to all files that end with ent.xml in all subdirectories of the directory specified with
the dir attribute of the <fileset> tag. However, it will not include any files that are directly in the base

•

60 01/29/2004 10:28:43 AM

directory of the file set.

Usage Example

<fileset dir="/etc" >
 <include name="httpd/**" />
 <include name="php.ini" />
</fileset>

This will include the apache configuration and PHP configuration file from /etc.

Attributes

Attributes for the <fileset> tag

Name Type Description Default Required

dir String The directory, the paths given in include/exclude are relative to.n/a Yes
The only tags that are supported by Fileset are the <include> and the <exclude> tags. These tags must have a
name attribute that contains the pattern to include/exclude.

Path / Classpath

The Path data type can be used to respresent path structures. In many cases the path type will be used for
nested <classpath> tags. E.g.

<path id="project.class.path">
 <pathelement dir="lib/"/>
 <pathelement dir="ext/"/>
</path>

<target name="blah">
 <taskdef name="mytask" path="myapp.phing.tasks.MyTask">
 <classpath refid="project.class.path"/>
 </taskdef>
</target>

Attributes for <path> tag

Name Type Description Default Required

dir String Specific path to directory n/a No

path String
A path (which contains multiple locations separated by path.separator) to
add.

n/a No

Nested Tags

The <path> tag supports nested <fileset> and <dirset> tags.

61 01/29/2004 10:28:43 AM

Core Filters

Filters have to be defined within a <filterchain> context to work. Example:

<filterchain>
 <expandproperties />
</filterchain>

There are two ways to use a filter: System filters (the ones shipped with Phing) can be used with their own tag
name, such as <xsltfilter>, <expandpropertyfilter> or <tabtospaces>. Another way is to use the
<filterreader> tag.

PhingFilterReader

The PhingFilterReader is used when you want to use filters that are not directly available through their own
tag. Example:

<filterchain>
 <filterreader classname="phing.filter.ReplaceTokens">
 <−− other way to set attributes −−>
 <param name="begintoken" value="@@" />
 <param name="endtoken" value="@@" />

 <−− other way to set nested tags −−>
 <param type="token" key="bar" value="foo" />
 </filterreader>
</filterchain>

In the filterreader tag you have to specify the path the class is in. The FilterReader will then load this class
and pass the parameters to the loaded filter. There are two types of parameters: First, you can pass "normal"
parameters to the loaded filter. That means, you can pass parameters as if they were attributes. If you want to
do this, you only specify the name and value attributes in the param tag. You can also pass nested elements to
the filter. Then, you have to specify the type attribute. This attribute specifies the name of the nested tag.

The result of the example above is identical with the following code:

<filterchain>
 <replacetokens begintoken="@@" endtoken="@@">
 <token key="bar" value="foo" />
 </replacetokens>
</filterchain>

Attributes

Attributes for <filterreader>

Name Type Description Default Required

classname String Name of class to use (in dot−path notation). n/a Yes

62 01/29/2004 10:28:43 AM

classpath String
The classpath to use when including classes. This is added to PHP's
include_path.

n/a No

classpathrefString
Reference to classpath to use when including classes. This is added to
PHP's include_path.

n/a No

Nested Tags

The PhingFilterReader supports nested <classpath>.

Advanced

In order to support the <filterreader ... /> sytax, your class must extend the BaseParamFilterReader class. Most
of the filters that are bundled with Phing can be invoked using this syntax. The noteable exception (at time of
writing) is the ReplaceRegexp filter, which expects find/replace parameters that do not fit the name/value
mold. For this reason, you must always use the shorthand <replaceregexp .../> to invoke this filter.

ExpandProperties

The ExpandProperties simply replaces property names with their property values. For example, if you have
the following in your build file:

<property name="description.txt" value="This is a text file" />

<copy todir="/tmp">
 <filterchain>
 <expandproperties />
 </filterchain>

 <fileset dir=".">
 <include name="**" />
 </fileset>
</copy>

And the string ${description.txt} it will be replaced by This is a text file.

HeadFilter

This filter reads the first n lines of a file; the others are not further passed through the filter chain. Usage
example:

<filterchain>
 <headfilter lines="20" />
</filterchain>

Attributes

Attributes for the <headfilter> tag

63 01/29/2004 10:28:43 AM

Name Type Description Default Required

lines IntegerNumber of lines to read.10 No

Line Contains

This filter is only "permeable" for lines that contain the expression given as parameter. For example, the
following filterchain would only let all the lines pass that contain class:

<filterchain>
 <linecontains>
 <contains value="class" />
 </linecontains>
</filterchain>

Nested Tags

The linecontains tag must contain one or more contains tags. Latter must have a value attribute that has to be
set to the string the line has to contain to be let through.

LineContainsRegexp

This filter is similar to LineContains but you can specify regular expressions instead of simple strings.

<filterchain>
 <linecontainsregexp>
 <regexp pattern="foo(.*)bar" />
 </linecontainsregexp>
</filterchain>

Nested Tags

The LineContains filter has to contain at least one regexp tag. This must have a pattern attribute that is set to a
regular expression.

PrefixLines

This filter adds a prefix to every line. The following example will add the string foo: in front of every line.

<filterchain>
 <prefixlines prefix="foo: " />
</filterchain>

Attributes

Attributes for the <prefixlines> tag

Name Type Description Default Required

64 01/29/2004 10:28:43 AM

prefix string Strint to prepend to every line.n/a Yes

ReplaceTokens

The ReplaceTokens filter will replace certain tokens. Tokens are strings enclosed in special characters. If you
want to replace ##BCHOME## by the path to the directory set in the environment variable BCHOME, you
could do the following:

<property environment="env" />

<filterchain>
 <replacetokens begintoken="##" endtoken="##">
 <token key="BCHOME" value="${env.BCHOME}" />
 </replacetokens>
</filterchain>

Attributes

Attributes for the <replacetokens> tag

Name Type Description Default Required

begintokenstring The string that marks the beginning of a token.@ No

endtoken string The string that marks the end of a token. @ No

Nested Tags

The ReplaceTokens filter must contain one or more token tags. These must have a key and a value attribute.

ReplaceRegexp

The ReplaceRegexp filter will perform a regexp find/replace on the input stream. For example, if you want to
replace ANT with Phing (ignoring case) and you want to replace references to *.java with *.php:

<filterchain>
 <replaceregexp>
 <regexp pattern="ANT" replace="Phing" ignoreCase="true"/>
 <regexp pattern="(\w+)\.java" replace="\1.php"/>
 </replaceregexp>
</filterchain>

Nested Tags

The ReplaceTokens filter must contain one or more regexp tags. These must have pattern and replace
attributes −− and optionally the ignoreCase attribute.

65 01/29/2004 10:28:43 AM

StripLineBreaks

The StripLineBreaks filter removes all linebreaks from the stream passed through the filter chain.

<filterchain>
 <striplinebreaks />
</filterchain>

StripLineComments

The StripLineComments filter removes all line comments from the stream passed through the filter chain:

<filterchain>
 <striplinecomments>
 <comment value="#" />
 <comment value="−−" />
 <comment value="//" />
 </striplinecomments>
</filterchain>

Nested Tags

The striplinecomments tag must contain one or more comment tags. These must have a value attribute that
specifies the character(s) that start a line comment.

StripPhpComments

The StripPhpComment filter removes all PHP comments from the stream passed through the filter.

<filterchain>
 <stripphpcomments />
</filterchain>

TabToSpaces

The TabToSpaces filter replaces all tab characters with a given count of space characters.

<filterchain>
 <tabtospaces tablength="8" />
</filterchain>

Attributes

Attributes for the <tabtospaces> filter

Name Type Description Default Required

66 01/29/2004 10:28:43 AM

tablengthIntegerThe number of space characters that a tab is to represent.8 No

TailFilter

Similar to HeadFilter, this filter reads the last n lines of a file; the others are not further passed through the
filter chain. Usage example:

<filterchain>
 <tailfilter lines="20" />
</filterchain>

Attributes

Attributes for the <tailfilter> tag

Name Type Description Default Required

lines IntegerNumber of lines from the back to read.10 No

XsltFilter

The XsltFilter applies a XSL template to the stream. Though you can use this filter directly, you should use
XsltTask which is shortcut to the following lines:

<filterchain>
 <xsltfilter style="somexslt.xsl" />
</filterchain>

Attributes

Attributes for the <xsltfilter> tag

Name Type Description Default Required

style String The XSLT stylesheet to use for transformation. n/a Yes

html Boolean
Whether to parse the input as HTML (using libxml2
DOMDocument::loadHTML()).

false No

Nested Tags

The XsltFilter filter may contain one or more param tags to pass any XSLT parameters to the stylesheet.
These param tags must have name and expression attributes.

Core Mappers

While filters are applied to the content of files, Mappers are applied to the filenames. All mappers have the
same API, i.e. the way you use them is the same:

<mapper type="mappername" from="frompattern" to="topattern" />

67 01/29/2004 10:28:43 AM

Attributes

Attributes for the <mapper> tag

Name Type Description Default Required

type StringType of the mapper. n/a Yes

from String
The pattern the filename is to be matched to. The exact
meaning is dependent on the implementation of the
mapper.

n/a
depends on the
implementation of the
mapper

to String
The pattern according to which the filename is to be
changed to. Here, the usage is dependent on the
implementation of the mapper, too.

n/a
depends on the
implementation of the
mapper

FlattenMapper

The FlattenMapper removes the directories from a filename and solely returns the filename.

<copy todir="/tmp">
 <mapper type="flatten" />

 <fileset refid="someid" />
</copy>

This code will copy all files in the fileset to /tmp. All files will be in the target directory.

Examples

<mapper type="flatten" />

Applying the mapper, you will get the following results from the following filenames:

From To

test.txt test.txt

./foo/bar/test.baktest.bak

GlobMapper

The GlobMapper works like the copy command in DOS:

<copy todir="/tmp">
 <mapper type="glob" from="*.php" to="*.php.bak"/>

 <fileset refid="someid" />
</copy>

This will change the extension of all files matching the pattern *.php to .php.bak.

68 01/29/2004 10:28:43 AM

Examples

<mapper type="glob" from="*txt" to="*txt.bak"/>

Applying the mapper, you will get the following results from the following filenames:

From To

test.txt test.txt.bak

./foo/bar/test.txt./foo/bar/test.txt.bak

mytxt mytxt.bak

SomeClass.phpignored, SomeClass.php

IdentityMapper

The IdentityMapper will not change anything on the source filenames.

MergeMapper

The MergeMapper changes all source filenames to the same filename.

Examples

<mapper type="merge" to="test.tar"/>

Applying the mapper, you will get the following results from the following filenames:

From To

test.txt test.tar

./foo/bar/test.txttest.tar

mytxt test.tar

SomeClass.phptest.tar

RegexpMapper

The RegexpMapper changes filenames according to a pattern defined by a regular expression. This is the most
powerful mapper and you should be able to use it for every possible application.

Examples

<mapper type="regexp" from="^(.*)\.conf\.xml" to="\1.php"/>

The mapper as above will do the following mappings:

69 01/29/2004 10:28:43 AM

From To

test.txt ignore, test.txt

./foo/bar/test.conf.xml./foo/bar/test.php

someconf.conf.xml someconf.php

70 01/29/2004 10:28:43 AM

Appendix D: Project Components
This file will give you a quick introduction and a reference of the things that you may see in a build files
besides tasks and types.

Phing Projects

Projects are the outermost container for everything in build files. The <project> tag also is the root tag in
build files. It contains the name, the directory, a short description and a default target.

Project may contain task calls and targets (see below).

Example

<?xml version="1.0" ?>

<project name="TestProject" basedir="." default="main"
 description="This is a test project to show how to use projects ;−)">

 <!−− Everything else goes here −−>

</project>

Attributes

Name Type Description Default Required

basedir String
The base directory of the project, i.e. the directory all paths are relative
to.

n/a Yes

default String
The name of the target that is executed if none is explicitely specified
when calling Phing

all No

descriptionString A free text description of the project n/a No

name String Name of the project n/a Yes

Targets

Example

<target if="lang" unless="lang.en" depends="foo1,foo2"
 name="main" description="This is an example target" >

 <!−− everything else goes here −−>

</target>

The target defined in the example above is only executed, if the property ${lang} is set and the property
${lang.en} is not set. Additionally, id depends on the targets foo1 and foo2. That means, the targets foo1 and

71 01/29/2004 10:28:43 AM

foo2 are executed before the target main is executed. The name of the target is main and it also has a
description.

Attributes

Name Type Description Default Required

depends String
One or more names of targets that have to be executed before this
target can be executed.

n/a No

descriptionString A free text description of the target. n/a No

if String The name of the property that is to be set if the target is to be executed.n/a No

name String The name of the target n/a Yes

unless String
The name of the property that is to be set if the target is not to be
executed.

n/a No

72 01/29/2004 10:28:43 AM

Appendix E: File Formats

Build File Format

The following XML file shows a skelleton build file, that only contains a project and a target. See the
references for the Phing Types and Tasks for information on how to use them.

<?xml version="1.0" ?>

<!−−
 The root tag of each build file must be a "project" tag.
−−>
<project name="(projectname)" [basedir="(projectbasedir)"]
 [default="(targetname)"] [description="(projectdescription)"]>

 <!−−
 Type and task calls here, i.e. filesets, patternsets,
 CopyTask calls etc.
 −−>

 <target name="(targetname)" [depends="targetname1,targetname2"]
 [if="(ifproperty)"] [unless="(unlessproperty)"]>
 <!−−
 Type and task calls here, i.e. filesets, patternsets,
 CopyTask calls, etc.
 −−>
 </target>

 <!−−
 More targets here
 −−>
</project>

Property File Format

Property Files define properties. Properties are stored in key/value pairs and may only contain plain text. The
suffix of these files should be .properties, the default Property File for a Build File is build.properties

Property files contain key/value pairs
key=value

Property keys may contain alphanumeric chars and colons, but
not special chars. This way you can create pseudo−namespaces
myapp.window.hsize=300
myapp.window.vsize=200
myapp.window.xpos=10
myapp.window.ypos=100

You can refer to values of other properties by enclosing their
keys in "${}".
text.width=${myapp.window.hsize}

73 01/29/2004 10:28:43 AM

Everything behind the equal sign is the value, you do
not have to enclose strings:
text=This is some text, Your OS is ${php.os}

I guess that is all there is to property files

74 01/29/2004 10:28:43 AM

Bibliography

International Standards

[osi−model]
OSI (Open System Interconnect) Model

http://www.iso.org◊
http://www.instantweb.com/foldoc/foldoc.cgi?OSI◊

[xml10−spec]
W3C XML 1.0 Specifications

http://www.w3.org/XML/◊
[unicode]

Unicode

http://www.unicode.org◊

Licenses

[gnu−lgpl]
The GPL (Gnu Lesser Public License)

http://www.gnu.org/licenses/lgpl.html◊
[gnu−fdl]

The Gnu FDL (Free Documentation License), the license used for this documentation

http://www.gnu.org/licenses/fdl.html◊

Open Source Projects

[bc]
Binarycloud

http://www.binarycloud.com◊
http://binarycloud.tigris.org◊

[w3c−tidy]
HTMLTidy, a W3C (x)HTML and XML syntax checker and code beautifier

http://www.w3c.org/People/Ragget/tidy/◊
[phpdoc]

The PHPDoc Project

http://www.phpdoc.de◊

75 01/29/2004 10:28:43 AM

http://www.iso.org
http://www.instantweb.com/foldoc/foldoc.cgi?OSI
http://www.w3.org/XML/
http://www.unicode.org
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/fdl.html
http://www.binarycloud.com
http://binarycloud.tigris.org
http://www.w3c.org/People/Raggett/tidy/
http://www.phpdoc.de

[phpclasses]
Manuel Lemos' PHPClasses Repository

http://www.phpclasses.org◊
[pear]

PEAR (Php Extension Archive Repository)

http://pear.php.net◊
[ant]

Ant, a Java Build Tool, the main inspiration for Phing

http://ant.apache.org◊
[gnumake]

GNU make, an inspiration for Phing

http://www.gnu.org/software/make/make.html◊
[pollo]

Pollo, a visual editor for XML files. A schema to edit phing build files is shipped with Phing.

http://pollo.sourceforge.net◊
[gingerall]

Ginger Alliance − Home Of Sablotorn

http://www.gingerall.com◊
[php]

The PHP homepage − PHP Hypertext Preprocessor

http://www.php.net◊
[gnu]

The GNU (GNU's Not Unix) Organization

http://www.gnu.org◊
[phing]

Phing (PHing Is Not Gnumake)

http://phing.info◊

Manuals

[cvs−howto]
Short manuals for CVS

http://www.ucolick.org/~de/CVSbeginner.html◊
[cvs−tigris]

CVS and tigris.org

76 01/29/2004 10:28:43 AM

http://www.phpclasses.org
http://pear.php.net
http://ant.apache.org
http://www.gnu.org/software/make/make.html
http://pollo.sourceforge.net
http://www.gingerall.com
http://www.php.net
http://www.gnu.org
http://phing.info/phing
http://www.ucolick.org/~de/CVSbeginner.html

http://binarycloud.tigris.org/project/www/docs/ddUsingCVS_command−line.html◊

Other Resources

[javadoc]
Sun Javadoc

http://java.sun.com/j2se/javadoc/◊
[zend]

Zend Technologies, Ltd.

http://www.zend.com◊

77 01/29/2004 10:28:43 AM

http://binarycloud.tigris.org/project/www/docs/ddUsingCVS_command-line.html
http://java.sun.com/j2se/javadoc/
http://www.zend.com

	Table of Contents
	About this book
	Authors
	CVS
	Copyright
	License

	Introduction
	What Phing Is
	Phing & Binarycloud: History
	How Phing Works
	Cool, so how can I help?

	Setting-Up Phing
	System Requirements
	Operating Systems
	Software Dependencies

	Obtaining Phing
	Distribution Files
	Getting A Development Copy From CVS

	PEAR Install
	Non-PEAR Install
	Unix
	Windows
	Advanced

	Calling Phing
	Command Line

	Getting Started
	XML And Phing
	Writing A Simple Buildfile
	Project Element
	Target Element
	Task Elements
	Property Element

	More Complex Buildfile

	Project Components
	Projects
	Project Components in General
	Targets
	Tasks
	Types
	Basics
	Referencing Types

	Basic Types
	FileSet
	FileList

	Extending Phing
	Extension Possibilities
	Tasks
	Types
	Mappers

	Source Layout
	Files And Directories
	File Naming Conventions
	Coding Standards

	System Initialization
	Wrapper Scripts
	The Main Application (phing.php)
	The Phing Class

	System Services
	The Exception system

	Build Lifecycle
	How Phing Parses Buildfiles

	Writing Tasks
	Creating A Task
	Using the Task
	Source Discussion
	Task Structure
	Package Imports
	Class Declaration
	Class Properties
	The Constructor
	Setter Methods
	Creator Methods
	init() Method
	main() Method
	Arbitrary Methods
	Summary

	Writing Types
	Creating a DataType
	Using the DataType
	Source Discussion

	Writing Mappers
	Creating a Mapper
	Using the Mapper

	Appendix A: Fact Sheet
	Built-In Properties
	Command Line Arguments
	Distribution File Layout
	Program Exit Codes
	The LGPL License

	Appendix B: Core Tasks
	AdhocTaskdefTask
	Parameters

	AdhocTypedefTask
	Parameters

	AppendTask
	Parameters
	Supported Nested Tags

	AvailableTask
	Parameters

	CallTargetTask
	Example
	Parameters

	CopyTask
	Example
	Attributes
	Supported Nested Tags

	 DeleteTask
	Example
	Attributes
	Supported Nested Tags

	EchoTask
	Example
	Attributes

	ExecTask
	Example
	Attributes

	ForeachTask
	Example
	Attributes

	InputTask
	Example
	Attributes

	MkdirTask
	Example
	Attributes

	MoveTask
	Example
	Attributes and Nested Elements

	PhingTask
	Example
	Attributes
	Supported Nested Tags
	Base directory of the new project

	PearPackageTask
	Example
	Attributes
	Supported Nested Tags

	PhpEvalTask
	Examples
	Attributes
	Supported Nested Tags

	PropertyTask
	Example
	Attributes

	ReflexiveTask
	Example
	Attributes
	Supported Nested Tags:

	ResolvePathTask
	Example
	Attributes

	TarTask
	Example
	Attributes
	Supported Nested Tags

	TaskdefTask
	Example
	Attributes
	Supported Nested Tags

	TouchTask
	Example
	Attributes

	TypedefTask
	Example
	Attributes
	Supported Nested Tags

	UpToDateTask
	Supported Nested Tags

	XsltTask
	Example
	Attributes
	Suppported Nested Elements

	Appendix C: Core Types
	FileList
	Usage Examples
	Attributes

	FileSet
	Examples
	Usage Example
	Attributes

	Path / Classpath
	Nested Tags

	Core Filters
	PhingFilterReader
	Attributes
	Nested Tags
	Advanced

	ExpandProperties
	HeadFilter
	Attributes

	Line Contains
	Nested Tags

	LineContainsRegexp
	Nested Tags

	PrefixLines
	Attributes

	ReplaceTokens
	Attributes
	Nested Tags

	ReplaceRegexp
	Nested Tags

	StripLineBreaks
	StripLineComments
	Nested Tags

	StripPhpComments
	TabToSpaces
	Attributes

	TailFilter
	Attributes

	XsltFilter
	Attributes
	Nested Tags

	Core Mappers
	Attributes

	FlattenMapper
	Examples

	GlobMapper
	Examples

	IdentityMapper
	MergeMapper
	Examples

	RegexpMapper
	Examples

	Appendix D: Project Components
	Phing Projects
	Example
	Attributes

	Targets
	Example
	Attributes

	Appendix E: File Formats
	Build File Format
	Property File Format

	Bibliography
	International Standards
	Licenses
	Open Source Projects
	Manuals
	Other Resources

